Suppr超能文献

用于增殖性糖尿病视网膜病变的不同激光和技术。

Different lasers and techniques for proliferative diabetic retinopathy.

作者信息

Moutray Tanya, Evans Jennifer R, Lois Noemi, Armstrong David J, Peto Tunde, Azuara-Blanco Augusto

机构信息

Ophthalmology Department, Royal Victoria Hospital, Grosvenor Road, Belfast, UK, BT12 6BA.

出版信息

Cochrane Database Syst Rev. 2018 Mar 15;3(3):CD012314. doi: 10.1002/14651858.CD012314.pub2.

Abstract

BACKGROUND

Diabetic retinopathy (DR) is a chronic progressive disease of the retinal microvasculature associated with prolonged hyperglycaemia. Proliferative DR (PDR) is a sight-threatening complication of DR and is characterised by the development of abnormal new vessels in the retina, optic nerve head or anterior segment of the eye. Argon laser photocoagulation has been the gold standard for the treatment of PDR for many years, using regimens evaluated by the Early Treatment of Diabetic Retinopathy Study (ETDRS). Over the years, there have been modifications of the technique and introduction of new laser technologies.

OBJECTIVES

To assess the effects of different types of laser, other than argon laser, and different laser protocols, other than those established by the ETDRS, for the treatment of PDR. We compared different wavelengths; power and pulse duration; pattern, number and location of burns versus standard argon laser undertaken as specified by the ETDRS.

SEARCH METHODS

We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2017, Issue 5); Ovid MEDLINE; Ovid Embase; LILACS; the ISRCTN registry; ClinicalTrials.gov and the ICTRP. The date of the search was 8 June 2017.

SELECTION CRITERIA

We included randomised controlled trials (RCTs) of pan-retinal photocoagulation (PRP) using standard argon laser for treatment of PDR compared with any other laser modality. We excluded studies of lasers that are not in common use, such as the xenon arc, ruby or Krypton laser.

DATA COLLECTION AND ANALYSIS

We followed Cochrane guidelines and graded the certainty of evidence using the GRADE approach.

MAIN RESULTS

We identified 11 studies from Europe (6), the USA (2), the Middle East (1) and Asia (2). Five studies compared different types of laser to argon: Nd:YAG (2 studies) or diode (3 studies). Other studies compared modifications to the standard argon laser PRP technique. The studies were poorly reported and we judged all to be at high risk of bias in at least one domain. The sample size varied from 20 to 270 eyes but the majority included 50 participants or fewer.Nd:YAG versus argon laser (2 studies): very low-certainty evidence on vision loss, vision gain, progression and regression of PDR, pain during laser treatment and adverse effects.Diode versus argon laser (3 studies): very-low certainty evidence on vision loss, vision gain, progression and regression of PDR and adverse effects; moderate-certainty evidence that diode laser was more painful (risk ratio (RR) troublesome pain during laser treatment (RR 3.12, 95% CI 2.16 to 4.51; eyes = 202; studies = 3; I = 0%).0.5 second versus 0.1 second exposure (1 study): low-certainty evidence of lower chance of vision loss with 0.5 second compared with 0.1 second exposure but estimates were imprecise and compatible with no difference or an increased chance of vision loss (RR 0.42, 95% CI 0.08 to 2.04, 44 eyes, 1 RCT); low-certainty evidence that people treated with 0.5 second exposure were more likely to gain vision (RR 2.22, 95% CI 0.68 to 7.28, 44 eyes, 1 RCT) but again the estimates were imprecise . People given 0.5 second exposure were more likely to have regression of PDR compared with 0.1 second laser PRP again with imprecise estimate (RR 1.17, 95% CI 0.92 to 1.48, 32 eyes, 1 RCT). There was very low-certainty evidence on progression of PDR and adverse effects.'Light intensity' PRP versus classic PRP (1 study): vision loss or gain was not reported but the mean difference in logMAR acuity at 1 year was -0.09 logMAR (95% CI -0.22 to 0.04, 65 eyes, 1 RCT); and low-certainty evidence that fewer patients had pain during light PRP compared with classic PRP with an imprecise estimate compatible with increased or decreased pain (RR 0.23, 95% CI 0.03 to 1.93, 65 eyes, 1 RCT).'Mild scatter' (laser pattern limited to 400 to 600 laser burns in one sitting) PRP versus standard 'full' scatter PRP (1 study): very low-certainty evidence on vision and visual field loss. No information on adverse effects.'Central' (a more central PRP in addition to mid-peripheral PRP) versus 'peripheral' standard PRP (1 study): low-certainty evidence that people treated with central PRP were more likely to lose 15 or more letters of BCVA compared with peripheral laser PRP (RR 3.00, 95% CI 0.67 to 13.46, 50 eyes, 1 RCT); and less likely to gain 15 or more letters (RR 0.25, 95% CI 0.03 to 2.08) with imprecise estimates compatible with increased or decreased risk.'Centre sparing' PRP (argon laser distribution limited to 3 disc diameters from the upper temporal and lower margin of the fovea) versus standard 'full scatter' PRP (1 study): low-certainty evidence that people treated with 'centre sparing' PRP were less likely to lose 15 or more ETDRS letters of BCVA compared with 'full scatter' PRP (RR 0.67, 95% CI 0.30 to 1.50, 53 eyes). Low-certainty evidence of similar risk of regression of PDR between groups (RR 0.96, 95% CI 0.73 to 1.27, 53 eyes). Adverse events were not reported.'Extended targeted' PRP (to include the equator and any capillary non-perfusion areas between the vascular arcades) versus standard PRP (1 study): low-certainty evidence that people in the extended group had similar or slightly reduced chance of loss of 15 or more letters of BCVA compared with the standard PRP group (RR 0.94, 95% CI 0.70 to 1.28, 270 eyes). Low-certainty evidence that people in the extended group had a similar or slightly increased chance of regression of PDR compared with the standard PRP group (RR 1.11, 95% CI 0.95 to 1.31, 270 eyes). Very low-certainty information on adverse effects.

AUTHORS' CONCLUSIONS: Modern laser techniques and modalities have been developed to treat PDR. However there is limited evidence available with respect to the efficacy and safety of alternative laser systems or strategies compared with the standard argon laser as described in ETDRS.

摘要

背景

糖尿病视网膜病变(DR)是一种与长期高血糖相关的视网膜微血管慢性进行性疾病。增殖性糖尿病视网膜病变(PDR)是糖尿病视网膜病变的一种威胁视力的并发症,其特征是在视网膜、视神经乳头或眼前节出现异常的新生血管。多年来,氩激光光凝一直是治疗PDR的金标准,采用糖尿病视网膜病变早期治疗研究(ETDRS)评估的治疗方案。多年来,该技术不断改进,并引入了新的激光技术。

目的

评估除氩激光外的不同类型激光以及除ETDRS制定的方案外的不同激光治疗方案对PDR的治疗效果。我们比较了不同的波长、功率和脉冲持续时间、光斑模式、数量和位置与ETDRS规定的标准氩激光治疗情况。

检索方法

我们检索了Cochrane对照试验中心注册库(CENTRAL)(其中包含Cochrane眼科和视力试验注册库)(2017年第5期);Ovid MEDLINE;Ovid Embase;LILACS;国际标准随机对照试验编号注册库;ClinicalTrials.gov和国际临床试验注册平台。检索日期为2017年6月8日。

入选标准

我们纳入了使用标准氩激光进行全视网膜光凝(PRP)治疗PDR与任何其他激光治疗方式比较的随机对照试验(RCT)。我们排除了不常用激光的研究,如氙弧激光、红宝石激光或氪激光。

数据收集与分析

我们遵循Cochrane指南,并使用GRADE方法对证据的确定性进行分级。

主要结果

我们从欧洲(6项)、美国(2项)、中东(1项)和亚洲(2项)共识别出11项研究。5项研究将不同类型的激光与氩激光进行比较:钕钇铝石榴石激光(Nd:YAG)(2项研究)或二极管激光(3项研究)。其他研究比较了对标准氩激光PRP技术的改进。这些研究报告质量较差,我们判断所有研究在至少一个领域都存在高偏倚风险。样本量从20只眼到270只眼不等,但大多数研究纳入的参与者为50名或更少。

钕钇铝石榴石激光与氩激光(2项研究):关于视力丧失、视力提高、PDR进展和消退、激光治疗期间疼痛及不良反应的证据确定性极低。

二极管激光与氩激光(3项研究):关于视力丧失、视力提高、PDR进展和消退及不良反应的证据确定性非常低;中等确定性证据表明二极管激光更疼痛(激光治疗期间麻烦疼痛的风险比(RR)为3.12,95%CI为2.16至4.51;眼数=202;研究=3;I²=0%)。

0.5秒与0.1秒曝光(1项研究):低确定性证据表明,与0.1秒曝光相比,0.5秒曝光时视力丧失的可能性较低,但估计值不精确,且与无差异或视力丧失可能性增加相符(RR为0.42,95%CI为0.08至2.04,44只眼,1项RCT);低确定性证据表明,接受0.5秒曝光治疗的人更有可能提高视力(RR为2.22,95%CI为0.68至7.28,44只眼,1项RCT),但估计值同样不精确。与0.1秒激光PRP相比,接受0.5秒曝光的人PDR消退的可能性更大,估计值也不精确(RR为1.17,95%CI为0.92至1.48,32只眼,1项RCT)。关于PDR进展和不良反应的证据确定性极低。

“光强度”PRP与经典PRP(1项研究):未报告视力丧失或提高情况,但1年时logMAR视力的平均差值为-0.09 logMAR(95%CI为-0.22至0.04,65只眼,1项RCT);低确定性证据表明,与经典PRP相比,光PRP期间疼痛的患者较少,估计值不精确,与疼痛增加或减少相符(RR为0.23,95%CI为0.03至1.93,65只眼,1项RCT)。

“轻度散射”(激光光斑模式一次限于400至600个激光光斑)PRP与标准“全散射”PRP(1项研究):关于视力和视野丧失的证据确定性极低。未提供不良反应信息。

“中心”(除中周部PRP外更偏向中心的PRP)与“周边”标准PRP(1项研究):低确定性证据表明,与周边激光PRP相比,接受中心PRP治疗的人更有可能丧失15个或更多最佳矫正视力(BCVA)字母(RR为3.00,95%CI为0.67至13.46,50只眼,1项RCT);获得15个或更多字母的可能性较小(RR为0.25,95%CI为0.03至2.08),估计值不精确,与风险增加或降低相符。

“中心 sparing”PRP(氩激光分布限于距黄斑颞上缘和下缘3个视盘直径范围内)与标准“全散射”PRP(1项研究):低确定性证据表明,与“全散射”PRP相比,接受“中心 sparing”PRP治疗的人丧失15个或更多ETDRS BCVA字母的可能性较小(RR为0.67,95%CI为0.30至1.50,53只眼)。两组间PDR消退风险相似的低确定性证据(RR为0.96,95%CI为0.73至1.27,53只眼)。未报告不良事件。

“扩展靶向”PRP(包括赤道和血管弓之间的任何毛细血管无灌注区域)与标准PRP(1项研究):低确定性证据表明,与标准PRP组相比,扩展组患者丧失15个或更多BCVA字母的可能性相似或略有降低(RR为0.94,95%CI为0.70至1.28,270只眼)。低确定性证据表明,与标准PRP组相比,扩展组患者PDR消退的可能性相似或略有增加(RR为1.11,95%CI为0.95至1.31,270只眼)。关于不良反应的信息确定性极低。

作者结论

现代激光技术和治疗方式已被用于治疗PDR。然而,与ETDRS中描述的标准氩激光相比,关于替代激光系统或策略疗效和安全性的证据有限。

相似文献

1
Different lasers and techniques for proliferative diabetic retinopathy.
Cochrane Database Syst Rev. 2018 Mar 15;3(3):CD012314. doi: 10.1002/14651858.CD012314.pub2.
2
Laser therapy for retinopathy in sickle cell disease.
Cochrane Database Syst Rev. 2022 Dec 12;12(12):CD010790. doi: 10.1002/14651858.CD010790.pub3.
3
Laser trabeculoplasty for open-angle glaucoma and ocular hypertension.
Cochrane Database Syst Rev. 2022 Aug 9;8(8):CD003919. doi: 10.1002/14651858.CD003919.pub3.
4
Anti-vascular endothelial growth factor for proliferative diabetic retinopathy.
Cochrane Database Syst Rev. 2023 Mar 20;3(3):CD008721. doi: 10.1002/14651858.CD008721.pub3.
5
Anti-vascular endothelial growth factor combined with intravitreal steroids for diabetic macular oedema.
Cochrane Database Syst Rev. 2018 Apr 18;4(4):CD011599. doi: 10.1002/14651858.CD011599.pub2.
6
Intraocular lens optic edge design for the prevention of posterior capsule opacification after cataract surgery.
Cochrane Database Syst Rev. 2021 Aug 16;8(8):CD012516. doi: 10.1002/14651858.CD012516.pub2.
7
Interventions for recurrent corneal erosions.
Cochrane Database Syst Rev. 2018 Jul 9;7(7):CD001861. doi: 10.1002/14651858.CD001861.pub4.
8
Community screening for visual impairment in older people.
Cochrane Database Syst Rev. 2018 Feb 20;2(2):CD001054. doi: 10.1002/14651858.CD001054.pub3.
9
Surgical interventions for bilateral congenital cataract in children aged two years and under.
Cochrane Database Syst Rev. 2022 Sep 15;9(9):CD003171. doi: 10.1002/14651858.CD003171.pub3.
10
Cyclodestructive procedures for non-refractory glaucoma.
Cochrane Database Syst Rev. 2018 Apr 25;4(4):CD009313. doi: 10.1002/14651858.CD009313.pub2.

引用本文的文献

2
Modulation of Oxidative Stress in Diabetic Retinopathy: Therapeutic Role of Natural Polyphenols.
Antioxidants (Basel). 2025 Jul 17;14(7):875. doi: 10.3390/antiox14070875.
3
Artificial intelligence for early detection of diabetes mellitus complications via retinal imaging.
J Diabetes Metab Disord. 2025 Apr 12;24(1):104. doi: 10.1007/s40200-025-01596-7. eCollection 2025 Jun.
4
Long-Term Diabetic Retinopathy Treatment Using Silicon Nanoneedles.
Small. 2025 Mar;21(9):e2410166. doi: 10.1002/smll.202410166. Epub 2025 Feb 5.
5
Targeting pericyte retention in Diabetic Retinopathy: a review.
Ann Med. 2024 Dec;56(1):2398200. doi: 10.1080/07853890.2024.2398200. Epub 2024 Sep 13.
6
Peripheral PRP in the Operating Room vs Standard Clinic PRP for the Initial Treatment of PDR.
J Vitreoretin Dis. 2024 Apr 5;8(4):388-393. doi: 10.1177/24741264241245628. eCollection 2024 Jul-Aug.
8
Endothelial to mesenchymal cell transition in diabetic retinopathy: targets and therapeutics.
Front Ophthalmol (Lausanne). 2023 Sep 7;3:1230581. doi: 10.3389/fopht.2023.1230581. eCollection 2023.
9
Chronic ocular small vessel disease: An overview of diabetic retinopathy and its relationship with cardiovascular health.
Am Heart J Plus. 2023 Feb 9;29:100270. doi: 10.1016/j.ahjo.2023.100270. eCollection 2023 May.
10
Advances in Research Related to MicroRNA for Diabetic Retinopathy.
J Diabetes Res. 2024 Feb 12;2024:8520489. doi: 10.1155/2024/8520489. eCollection 2024.

本文引用的文献

3
Factors Associated with Worsening Proliferative Diabetic Retinopathy in Eyes Treated with Panretinal Photocoagulation or Ranibizumab.
Ophthalmology. 2017 Apr;124(4):431-439. doi: 10.1016/j.ophtha.2016.12.005. Epub 2017 Feb 1.
5
Changes in pupil size following panretinal retinal photocoagulation: conventional laser vs pattern scan laser (PASCAL).
Eye (Lond). 2016 Oct;30(10):1359-1364. doi: 10.1038/eye.2016.135. Epub 2016 Jul 8.
9
Clinical efficacy of navigated panretinal photocoagulation in proliferative diabetic retinopathy.
Am J Ophthalmol. 2015 May;159(5):884-9. doi: 10.1016/j.ajo.2015.02.006. Epub 2015 Feb 19.
10
Laser photocoagulation for proliferative diabetic retinopathy.
Cochrane Database Syst Rev. 2014 Nov 24;2014(11):CD011234. doi: 10.1002/14651858.CD011234.pub2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验