Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.
J Chem Phys. 2018 Mar 14;148(10):102326. doi: 10.1063/1.5005557.
We extend the Mixed Quantum-Classical Initial Value Representation (MQC-IVR), a semiclassical method for computing real-time correlation functions, to electronically nonadiabatic systems using the Meyer-Miller-Stock-Thoss (MMST) Hamiltonian in order to treat electronic and nuclear degrees of freedom (dofs) within a consistent dynamic framework. We introduce an efficient symplectic integration scheme, the MInt algorithm, for numerical time evolution of the phase space variables and monodromy matrix under the non-separable MMST Hamiltonian. We then calculate the probability of transmission through a curve crossing in model two-level systems and show that MQC-IVR reproduces quantum-limit semiclassical results in good agreement with exact quantum methods in one limit, and in the other limit yields results that are in keeping with classical limit semiclassical methods like linearized IVR. Finally, exploiting the ability of the MQC-IVR to quantize different dofs to different extents, we present a detailed study of the extents to which quantizing the nuclear and electronic dofs improves numerical convergence properties without significant loss of accuracy.
我们将混合量子经典初始值表示(MQC-IVR)扩展到使用迈耶-米勒-斯托克-索斯(MMST)哈密顿量的非绝热电子系统,以在一致的动力学框架内处理电子和核自由度(dofs)。我们引入了一种有效的辛积分方案,即 MInt 算法,用于在不可分离的 MMST 哈密顿量下对相空间变量和幺正矩阵进行数值时间演化。然后,我们计算了模型双能级系统中曲线交叉处的传输概率,并表明 MQC-IVR 在一个极限下很好地再现了量子极限半经典结果,与精确量子方法一致,而在另一个极限下,其结果与像线性 IVR 这样的经典极限半经典方法一致。最后,利用 MQC-IVR 对不同自由度进行不同程度量子化的能力,我们详细研究了对核和电子自由度进行量子化在不显著降低精度的情况下提高数值收敛性的程度。