Suppr超能文献

Non-linear correlation functions and zero-point energy flow in mixed quantum-classical semiclassical dynamics.

作者信息

Malpathak Shreyas, Ananth Nandini

机构信息

Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA.

出版信息

J Chem Phys. 2023 Mar 14;158(10):104106. doi: 10.1063/5.0133222.

Abstract

Mixed quantum classical (MQC)-initial value representation (IVR) is a recently introduced semiclassical framework that allows for selective quantization of the modes of a complex system. In the quantum limit, MQC reproduces the semiclassical Double Herman-Kluk IVR results, accurately capturing nuclear quantum coherences and conserving zero-point energy. However, in the classical limit, although MQC mimics the Husimi-IVR for real-time correlation functions with linear operators, it is significantly less accurate for non-linear correlation functions with errors even at time zero. Here, we identify the origin of this discrepancy in the MQC formulation and propose a modification. We analytically show that the modified MQC approach is exact for all correlation functions at time zero, and in a study of zero-point energy (ZPE) flow, we numerically demonstrate that it correctly obtains the quantum and classical limits as a function of time. Interestingly, although classical-limit MQC simulations show the expected, unphysical ZPE leakage, we find that it is possible to predict and even modify the direction of ZPE flow through selective quantization of the system, with the quantum-limit modes accepting energy but preserving the minimum quantum mechanically required energy.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验