Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.
J Chem Phys. 2019 Oct 7;151(13):134109. doi: 10.1063/1.5117160.
The semiclassical double Herman-Kluk initial value representation is an accurate approach to computing quantum real time correlation functions, but its applications are limited by the need to evaluate an oscillatory integral. In previous work, we have shown that this "sign problem" can be mitigated using the modified Filinov filtration technique to control the extent to which individual modes of the system contribute to the overall phase of the integrand. Here, we follow this idea to a logical conclusion: we analytically derive a general expression for the mixed quantum-classical limit of the semiclassical correlation function-analytical mixed quantum-classical-initial value representation (AMQC-IVR), where the phase contributions from the "classical" modes of the system are filtered while the "quantum" modes are treated in the full semiclassical limit. We numerically demonstrate the accuracy and efficiency of the AMQC-IVR formulation in calculations of quantum correlation functions and reaction rates using three model systems with varied coupling strengths between the classical and quantum subsystems. We also introduce a separable prefactor approximation that further reduces computational cost but is only accurate in the limit of weak coupling between the quantum and classical subsystems.
半经典双赫尔曼-克鲁克初值表示法是计算量子实时相关函数的精确方法,但由于需要评估一个振荡积分,其应用受到限制。在之前的工作中,我们已经表明,可以使用改进的菲利诺过滤技术来减轻这种“符号问题”,以控制系统的各个模式对积分整体相位的贡献程度。在这里,我们根据这个想法得出了一个合乎逻辑的结论:我们从分析的角度推导出了半经典相关函数的混合量子经典极限的一般表达式——分析混合量子经典初值表示法(AMQC-IVR),其中对系统的“经典”模式的相位贡献进行过滤,而“量子”模式则在全半经典极限中进行处理。我们使用三个具有不同经典和量子子系统之间耦合强度的模型系统,数值证明了 AMQC-IVR 公式在计算量子相关函数和反应速率方面的准确性和效率。我们还引入了一个可分离的前因子近似,进一步降低了计算成本,但仅在量子和经典子系统之间的弱耦合极限下准确。