Suppr超能文献

发育和疾病过程中基因调控的表观遗传控制:从视网膜看问题。

Epigenetic control of gene regulation during development and disease: A view from the retina.

机构信息

Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

出版信息

Prog Retin Eye Res. 2018 Jul;65:1-27. doi: 10.1016/j.preteyeres.2018.03.002. Epub 2018 Mar 12.

Abstract

Complex biological processes, such as organogenesis and homeostasis, are stringently regulated by genetic programs that are fine-tuned by epigenetic factors to establish cell fates and/or to respond to the microenvironment. Gene regulatory networks that guide cell differentiation and function are modulated and stabilized by modifications to DNA, RNA and proteins. In this review, we focus on two key epigenetic changes - DNA methylation and histone modifications - and discuss their contribution to retinal development, aging and disease, especially in the context of age-related macular degeneration (AMD) and diabetic retinopathy. We highlight less-studied roles of DNA methylation and provide the RNA expression profiles of epigenetic enzymes in human and mouse retina in comparison to other tissues. We also review computational tools and emergent technologies to profile, analyze and integrate epigenetic information. We suggest implementation of editing tools and single-cell technologies to trace and perturb the epigenome for delineating its role in transcriptional regulation. Finally, we present our thoughts on exciting avenues for exploring epigenome in retinal metabolism, disease modeling, and regeneration.

摘要

复杂的生物过程,如器官发生和体内平衡,受到遗传程序的严格调控,这些遗传程序通过表观遗传因素进行微调,以确定细胞命运和/或对微环境做出反应。指导细胞分化和功能的基因调控网络通过 DNA、RNA 和蛋白质的修饰来调节和稳定。在这篇综述中,我们重点关注两种关键的表观遗传变化——DNA 甲基化和组蛋白修饰,并讨论它们对视网膜发育、衰老和疾病的贡献,特别是在年龄相关性黄斑变性(AMD)和糖尿病性视网膜病变的背景下。我们强调了 DNA 甲基化的较少研究作用,并提供了人类和小鼠视网膜与其他组织相比的表观遗传酶的 RNA 表达谱。我们还回顾了用于分析和整合表观遗传信息的计算工具和新兴技术。我们建议实施编辑工具和单细胞技术来追踪和干扰表观基因组,以阐明其在转录调控中的作用。最后,我们提出了在探索视网膜代谢、疾病建模和再生中的表观基因组方面令人兴奋的途径的想法。

相似文献

1
Epigenetic control of gene regulation during development and disease: A view from the retina.
Prog Retin Eye Res. 2018 Jul;65:1-27. doi: 10.1016/j.preteyeres.2018.03.002. Epub 2018 Mar 12.
2
Epigenome-metabolism nexus in the retina: implications for aging and disease.
Trends Genet. 2024 Aug;40(8):718-729. doi: 10.1016/j.tig.2024.04.012. Epub 2024 May 22.
3
Epigenomics in stress tolerance of plants under the climate change.
Mol Biol Rep. 2023 Jul;50(7):6201-6216. doi: 10.1007/s11033-023-08539-6. Epub 2023 Jun 9.
4
DNA methylation plays important roles in retinal development and diseases.
Exp Eye Res. 2021 Oct;211:108733. doi: 10.1016/j.exer.2021.108733. Epub 2021 Aug 18.
6
Potential of epigenetic mechanisms in AMD pathology.
Front Biosci (Schol Ed). 2013 Jan 1;5(2):412-25. doi: 10.2741/s380.
7
The role of epigenetics in age-related macular degeneration.
Eye (Lond). 2014 Dec;28(12):1407-17. doi: 10.1038/eye.2014.225. Epub 2014 Sep 19.
9
Epigenetics in age-related macular degeneration: new discoveries and future perspectives.
Cell Mol Life Sci. 2020 Mar;77(5):807-818. doi: 10.1007/s00018-019-03421-w. Epub 2020 Jan 2.
10
[Epigenetics in age-related macular degeneration (AMD) - French translation of the article].
J Fr Ophtalmol. 2018 Dec;41(10):981-990. doi: 10.1016/j.jfo.2018.06.004. Epub 2018 Nov 16.

引用本文的文献

1
Integration of multi-omics data reveals dysregulated RNA methylation in retinal pigment epithelium drives age-related macular degeneration.
Int J Ophthalmol. 2025 Sep 18;18(9):1626-1639. doi: 10.18240/ijo.2025.09.03. eCollection 2025.
2
Tet3-mediated DNA demethylation is essential for maintaining the dedifferentiation capacity of mammalian Müller glia.
Front Mol Neurosci. 2025 Jul 17;18:1628860. doi: 10.3389/fnmol.2025.1628860. eCollection 2025.
4
Accumulation of Epigenetic Noise in the Aging Corneal Epithelium and Its Possible Mechanism.
FASEB J. 2025 Jun 15;39(11):e70699. doi: 10.1096/fj.202500954R.
5
Genetic ablation of the TET family in retinal progenitor cells impairs photoreceptor development and leads to blindness.
Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2420091122. doi: 10.1073/pnas.2420091122. Epub 2025 Mar 7.
9
Epigenome-metabolism nexus in the retina: implications for aging and disease.
Trends Genet. 2024 Aug;40(8):718-729. doi: 10.1016/j.tig.2024.04.012. Epub 2024 May 22.

本文引用的文献

1
Umap and Bismap: quantifying genome and methylome mappability.
Nucleic Acids Res. 2018 Nov 16;46(20):e120. doi: 10.1093/nar/gky677.
2
RNA Biology in Retinal Development and Disease.
Trends Genet. 2018 May;34(5):341-351. doi: 10.1016/j.tig.2018.01.002. Epub 2018 Jan 31.
3
Molecular Anatomy of the Developing Human Retina.
Dev Cell. 2017 Dec 18;43(6):763-779.e4. doi: 10.1016/j.devcel.2017.10.029. Epub 2017 Dec 7.
4
Polycomb repression complex 2 is required for the maintenance of retinal progenitor cells and balanced retinal differentiation.
Dev Biol. 2018 Jan 1;433(1):47-60. doi: 10.1016/j.ydbio.2017.11.004. Epub 2017 Nov 12.
5
The Transcription Factor Prdm16 Marks a Single Retinal Ganglion Cell Subtype in the Mouse Retina.
Invest Ophthalmol Vis Sci. 2017 Oct 1;58(12):5421-5433. doi: 10.1167/iovs.17-22442.
6
Epigenetic control of early neurodegenerative events in diabetic retinopathy by the histone deacetylase SIRT6.
J Neurochem. 2018 Jan;144(2):128-138. doi: 10.1111/jnc.14243. Epub 2017 Nov 21.
7
Caloric restriction delays age-related methylation drift.
Nat Commun. 2017 Sep 14;8(1):539. doi: 10.1038/s41467-017-00607-3.
8
Samd7 is a cell type-specific PRC1 component essential for establishing retinal rod photoreceptor identity.
Proc Natl Acad Sci U S A. 2017 Sep 26;114(39):E8264-E8273. doi: 10.1073/pnas.1707021114. Epub 2017 Sep 12.
9
Stimulation of functional neuronal regeneration from Müller glia in adult mice.
Nature. 2017 Aug 3;548(7665):103-107. doi: 10.1038/nature23283. Epub 2017 Jul 26.
10
Establishment of human retinal mitoscriptome gene expression signature for diabetic retinopathy using cadaver eyes.
Mitochondrion. 2017 Sep;36:150-181. doi: 10.1016/j.mito.2017.07.007. Epub 2017 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验