Suppr超能文献

银和钛纳米粒子(AgNPs 和 TiNPs)处理大鼠中线粒体功能障碍的观点。

A perspective of mitochondrial dysfunction in rats treated with silver and titanium nanoparticles (AgNPs and TiNPs).

机构信息

Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, CEP:14040901, Ribeirão Preto, São Paulo, Brazil; Departamento Bioprocessos e Biotecnologia, Faculdade de Ciências Agronômicas, Fazenda Experimental de Lageado, Universidade Estadual Paulista "Júlio de Mesquita Filho", Botucatu, SP, Brazil.

Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, CEP:14040901, Ribeirão Preto, São Paulo, Brazil.

出版信息

J Trace Elem Med Biol. 2018 May;47:63-69. doi: 10.1016/j.jtemb.2018.01.007. Epub 2018 Jan 31.

Abstract

Nanotechnology is a growing branch of science that deals with the development of structural features bearing at least one dimension in the nano range. More specifically, nanomaterials are defined as objects with dimensions that range from 1 to 100 nm, which give rise to interesting properties. In particular, silver and titanium nanoparticles (AgNPs and TiNPs, respectively) are known for their biological and biomedical properties and are often used in consumer products such as cosmetics, food additives, kitchen utensils, and toys. This situation has increased environmental and occupational exposure to AgNPs and TiNPs, which has placed demand for the risk assessment of NPs. Indeed, the same properties that make nanomaterials so attractive could also prove deleterious to biological systems. Of particular concern is the effect of NPs on mitochondria because these organelles play an essential role in cellular homeostasis. In this scenario, this work aimed to study how AgNPs and TiNPs interact with the mitochondrial respiration chain and to analyze how this interaction interferes in the bioenergetics and oxidative state of the organelles after sub-chronic exposure. Mitochondria were exposed to the NPs by gavage treatment for 21 days to check whether co-exposure of the organelles to the two types of NPs elicited any mitochondrion-NP interaction. More specifically, male Wistar rats were randomly assigned to four groups. Groups I, II, III, and IV received mineral oil, TiNPs (100 μg/kg/day), AgNPs (100 μg/kg/day), and TiNPs + AgNPs (100 μg/kg/day), respectively, by gavage. The liver was immediately removed, and the mitochondria were isolated and used within 3 h. Exposure of mitochondria to TiNPs + AgNPs lowered the respiratory control ratio, causing an uncoupling effect in the oxidative phosphorylation system. Moreover, both types of NPs induced mitochondrial swelling. Extended exposure of mitochondria to the NPs maintained increased ROS levels and depleted the endogenous antioxidant system. The AgNPs and TiNPs acted synergistically-the intensity of the toxic effect on the mitochondrial redox state was more significant in the presence of both types of NPs. These findings imply that the action of the NPs on mitochondria underlie NP toxicity, so future application of NPs requires special attention.

摘要

纳米技术是一门不断发展的科学分支,主要研究具有至少一维处于纳米范围内的结构特征的开发。更具体地说,纳米材料被定义为尺寸在 1 至 100nm 范围内的物体,这些物体具有有趣的性质。特别是,银和钛纳米粒子(分别为 AgNPs 和 TiNPs)以其生物和生物医学特性而闻名,并且经常用于消费品,如化妆品、食品添加剂、厨具和玩具。这种情况增加了对 AgNPs 和 TiNPs 的环境和职业暴露,从而对纳米颗粒的风险评估提出了需求。事实上,使纳米材料如此吸引人的相同特性也可能对生物系统造成有害影响。特别令人关注的是纳米颗粒对线粒体的影响,因为这些细胞器在细胞内稳态中起着至关重要的作用。在这种情况下,这项工作旨在研究 AgNPs 和 TiNPs 如何与线粒体呼吸链相互作用,并分析这种相互作用如何在细胞器的亚慢性暴露后干扰其生物能量和氧化状态。通过灌胃处理使线粒体暴露于 NPs 21 天,以检查细胞器是否同时暴露于两种类型的 NPs 会引发任何线粒体-NP 相互作用。更具体地说,雄性 Wistar 大鼠被随机分为四组。I、II、III 和 IV 组分别接受矿物油、TiNPs(100μg/kg/天)、AgNPs(100μg/kg/天)和 TiNPs+AgNPs(100μg/kg/天)灌胃。立即取出肝脏,并在 3 小时内分离并使用线粒体。线粒体暴露于 TiNPs+AgNPs 降低了呼吸控制比,导致氧化磷酸化系统解偶联。此外,两种类型的 NPs 都引起了线粒体肿胀。线粒体长时间暴露于 NPs 会维持较高的 ROS 水平并耗尽内源性抗氧化系统。AgNPs 和 TiNPs 协同作用——在存在两种类型的 NPs 时,对线粒体氧化还原状态的毒性作用更显著。这些发现意味着 NPs 对线粒体的作用是 NP 毒性的基础,因此未来对 NPs 的应用需要特别注意。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验