Suppr超能文献

真菌介导的低细胞毒性银纳米颗粒的生物合成——可持续纳米技术

Biological Synthesis of Low Cytotoxicity Silver Nanoparticles (AgNPs) by the Fungus -Sustainable Nanotechnology.

作者信息

Alves Mariana Fuinhas, Paschoal Ariane Caroline Campos, Klimeck Tabata D'Maiella Freitas, Kuligovski Crisciele, Marcon Bruna Hilzendeger, de Aguiar Alessandra Melo, Murray Patrick G

机构信息

Shannon Applied Biotechnology Centre, Department of Applied Science, Faculty of Applied Sciences and Technology, Moylish Campus, Technological University of the Shannon: Midlands Midwest, Moylish, V94 EC5T Limerick, Ireland.

Laboratório de Biologia Básica de Células-Tronco, Instituto Carlos Chagas, FIOCRUZ Paraná, Curitiba 81350-010, PR, Brazil.

出版信息

J Fungi (Basel). 2022 Jun 4;8(6):605. doi: 10.3390/jof8060605.

Abstract

Fungal biotechnology research has rapidly increased as a result of the growing awareness of sustainable development and the pressing need to explore eco-friendly options. In the nanotechnology field, silver nanoparticles (AgNPs) are currently being studied for application in cancer therapy, tumour detection, drug delivery, and elsewhere. Therefore, synthesising nanoparticles (NPs) with low toxicity has become essential in the biomedical area. The fungus () was here investigated-to the best of our knowledge, for the first time-for application in the production of AgNPs. Transmission electronic microscopy (TEM) images demonstrated a spherical AgNP shape, with an average size of 8.93 nm. Energy-dispersive X-ray spectrometry (EDX) confirmed the presence of elemental silver. A neutral red uptake (NRU) test evaluated the cytotoxicity of the AgNPs at different inhibitory concentrations (ICs). A half-maximal concentration (IC = 119.69 µg/mL) was used to predict a half-maximal lethal dose (LD = 624.31 mg/kg), indicating a Global Harmonized System of Classification and Labelling of Chemicals (GHS) acute toxicity estimate (ATE) classification category of 4. The fungus extract showed a non-toxic profile at the IC tested. Additionally, the interaction between the AgNPs and the Balb/c 3T3 NIH cells at an ultrastructural level resulted in preserved cells structures at non-toxic concentrations (IC = 91.77 µg/mL), demonstrating their potential as sustainable substitutes for physical and chemically made AgNPs. Nonetheless, at the IC, the cytoplasm of the cells was damaged and mitochondrial morphological alteration was evident. This fact highlights the fact that dose-dependent phenomena are involved, as well as emphasising the importance of investigating NPs' effects on mitochondria, as disruption to this organelle can impact health.

摘要

由于对可持续发展的认识不断提高以及迫切需要探索环保方案,真菌生物技术研究迅速增加。在纳米技术领域,目前正在研究银纳米颗粒(AgNPs)在癌症治疗、肿瘤检测、药物递送等方面的应用。因此,在生物医学领域合成低毒性的纳米颗粒(NPs)已变得至关重要。据我们所知,首次对真菌()进行研究,以用于AgNPs的生产。透射电子显微镜(TEM)图像显示AgNP呈球形,平均尺寸为8.93nm。能量色散X射线光谱(EDX)证实了元素银的存在。中性红摄取(NRU)试验评估了不同抑制浓度(ICs)下AgNPs的细胞毒性。使用半数最大浓度(IC = 119.69μg/mL)来预测半数最大致死剂量(LD = 624.31mg/kg),表明全球化学品统一分类和标签制度(GHS)急性毒性估计(ATE)分类类别为4。在所测试的IC下,真菌提取物显示出无毒特征。此外,在超微结构水平上,AgNPs与Balb/c 3T3 NIH细胞之间的相互作用在无毒浓度(IC = 91.77μg/mL)下导致细胞结构得以保留,证明了它们作为物理和化学制备的AgNPs的可持续替代品的潜力。尽管如此,在IC时,细胞的细胞质受损,线粒体形态改变明显。这一事实突出了剂量依赖性现象的存在,同时也强调了研究NPs对线粒体影响的重要性,因为对该细胞器的破坏会影响健康。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fd2/9224622/65b5e42a11df/jof-08-00605-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验