Cortes Fanny, Turchi Martelli Celina Maria, Arraes de Alencar Ximenes Ricardo, Montarroyos Ulisses Ramos, Siqueira Junior João Bosco, Gonçalves Cruz Oswaldo, Alexander Neal, Vieira de Souza Wayner
University of Pernambuco, Recife, Brazil.
Aggeu Magalhaes Institute, Fiocruz Recife, Brazil.
Acta Trop. 2018 Jun;182:190-197. doi: 10.1016/j.actatropica.2018.03.006. Epub 2018 Mar 12.
The aim of the study was to evaluate the temporal patterns of dengue incidence from 2001 to 2014 and forecast for 2015 in two Brazilian cities. We analysed dengue surveillance data (SINAN) from Recife, 1.6 million population, and Goiania, 1.4 million population. We used Auto-Regressive Integrated Moving Average (ARIMA) modelling of monthly notified dengue incidence (2001-2014). Forecasting models (95% prediction interval) were developed to predict numbers of dengue cases for 2015. During the study period, 73,479 dengue cases were reported in Recife varying from 11 cases/100,000 inhab (2004) to 2418 cases/100,000 inhab (2002). In Goiania, 253,008 dengue cases were reported and the yearly incidence varied from 293 cases/100,000 inhab (2004) to 3927 cases/100,000 inhab (2013). Trend was the most important component for Recife, while seasonality was the most important one in Goiania. For Recife, the best fitted model was ARIMA (1,1,3) and for Goiania Seasonal ARIMA (1,0,2) (1,1,2). The model predicted 4254 dengue cases for Recife in 2015; SINAN registered 35,724 cases. For Goiania the model predicted 33,757 cases for 2015; the reported number of cases by SINAN was 74,095, within the 95% prediction interval. The difference between notified and forecasted dengue cases in Recife can be explained by the co-circulation of dengue and Zika virus in 2015. In this year, all cases with rash were notified as "dengue-like" illness. The ARIMA models may be considered a baseline for the time series analysis of dengue incidence before the Zika epidemic.
该研究的目的是评估2001年至2014年巴西两个城市登革热发病率的时间模式,并预测2015年的发病率。我们分析了累西腓(人口160万)和戈亚尼亚(人口140万)的登革热监测数据(SINAN)。我们使用自回归积分滑动平均(ARIMA)模型对每月通报的登革热发病率(2001 - 2014年)进行分析。开发了预测模型(95%预测区间)来预测2015年的登革热病例数。在研究期间,累西腓报告了73479例登革热病例,发病率从每10万居民11例(2004年)到每10万居民2418例(2002年)不等。在戈亚尼亚,报告了253008例登革热病例,年发病率从每10万居民293例(2004年)到每10万居民3927例(2013年)不等。趋势是累西腓最重要的组成部分,而季节性是戈亚尼亚最重要的组成部分。对于累西腓,拟合效果最佳的模型是ARIMA(1,1,3),对于戈亚尼亚是季节性ARIMA(1,0,2)(1,1,2)。该模型预测2015年累西腓有4254例登革热病例;SINAN记录了35724例。对于戈亚尼亚,该模型预测2015年有33757例;SINAN报告的病例数为74095例,在95%预测区间内。累西腓通报的登革热病例与预测病例之间的差异可以用2015年登革热和寨卡病毒的共同传播来解释。在这一年,所有出疹病例都被通报为“类登革热”疾病。在寨卡疫情之前,ARIMA模型可被视为登革热发病率时间序列分析的基线。