Giorgiutti-Dauphiné F, Pauchard L
Laboratoire F.A.S.T, UMR 7608 CNRS - Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay CEDEX, France.
Eur Phys J E Soft Matter. 2018 Mar 19;41(3):32. doi: 10.1140/epje/i2018-11639-2.
The drying of complex fluids involves a large number of microscopic phenomena (transport and organization of non-volatile solutes) as well as hydrodynamic and mechanical instabilities. These phenomena can be captured in drying sessile drops where different domains can be identified: strong concentration gradients, formation of a glassy or porous envelope that withstands mechanical stress, and consolidation of a layer strongly adhering to the substrate at the drop edge. In colloidal systems, we quantify the evolution of the particle volume fraction at a nanometric scale and microscopic scale and identify the conditions for the envelope formation at the free surface by balancing the effect of diffusion and evaporation. When a solid envelope is formed at a drop surface, the mechanical instabilities induced by the drying result in different drop shapes. Finally, large drying stresses build up in the solid layer adhering on the substrate, and possibly cause crack formation. In particular, we study how crack patterns are affected by the contact angle of drops and the drying conditions. A particular interest of the review is devoted to drying pattern of solutes.
复杂流体的干燥涉及大量微观现象(非挥发性溶质的传输和组织)以及流体动力学和机械不稳定性。这些现象可以在干燥的静置液滴中观察到,其中可以识别出不同的区域:强浓度梯度、形成能承受机械应力的玻璃状或多孔包膜,以及在液滴边缘形成牢固粘附在基底上的一层固结物。在胶体系统中,我们在纳米尺度和微观尺度上量化颗粒体积分数的演变,并通过平衡扩散和蒸发的影响来确定在自由表面形成包膜的条件。当在液滴表面形成固体包膜时,干燥引起的机械不稳定性会导致不同的液滴形状。最后,在粘附在基底上的固体层中会产生较大的干燥应力,并可能导致裂纹形成。特别是,我们研究裂纹图案如何受到液滴接触角和干燥条件的影响。本综述特别关注溶质的干燥模式。