Suppr超能文献

血滴干燥过程中的图案形成。

Pattern formation in drying blood drops.

机构信息

BioPRIA and Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.

School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.

出版信息

Philos Trans A Math Phys Eng Sci. 2021 Aug 9;379(2203):20200391. doi: 10.1098/rsta.2020.0391. Epub 2021 Jun 21.

Abstract

Patterns in dried droplets are commonly observed as rings left after spills of dirty water or coffee have evaporated. Patterns are also seen in dried blood droplets and the patterns have been shown to differ from patients afflicted with different medical conditions. This has been proposed as the basis for a new generation of low-cost blood diagnostics. Before these diagnostics can be widely used, the underlying mechanisms leading to pattern formation in these systems must be understood. We analyse the height profile and appearance of dispersions prepared with red blood cells (RBCs) from healthy donors. The red cell concentrations and diluent were varied and compared with simple polystyrene particle systems to identify the dominant mechanistic variables. Typically, a high concentration of non-volatile components suppresses ring formation. However, RBC suspensions display a greater volume of edge deposition when the red cell concentration is higher. This discrepancy is caused by the consolidation front halting during drying for most blood suspensions. This prevents the standard horizontal drying mechanism and leads to two clearly defined regions in final crack patterns and height profile. This article is part of a discussion meeting issue 'A cracking approach to inventing new tough materials: fracture stranger than friction'.

摘要

干燥液滴中的图案通常是在脏水或咖啡溢出蒸发后留下的环状物。在干燥的血滴中也可以看到图案,并且已经表明这些图案与患有不同医疗条件的患者不同。这已被提议作为新一代低成本血液诊断的基础。在这些诊断可以广泛使用之前,必须了解导致这些系统中图案形成的基本机制。我们分析了用来自健康供体的红细胞(RBC)制备的分散体的高度轮廓和外观。改变红细胞浓度和稀释剂,并与简单的聚苯乙烯颗粒系统进行比较,以确定主要的机械变量。通常,非挥发性成分的高浓度会抑制环的形成。然而,当红细胞浓度较高时,RBC 悬浮液显示出更多的边缘沉积。这种差异是由于干燥过程中大部分血液悬浮液中的固结前沿停止引起的。这阻止了标准的水平干燥机制,并导致最终裂纹图案和高度轮廓中有两个明确界定的区域。本文是讨论会议议题“通过开裂来发明新型坚韧材料:断裂比摩擦更奇特”的一部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1a9/8405133/2e83d43ece2b/rsta20200391f01.jpg

相似文献

1
Pattern formation in drying blood drops.
Philos Trans A Math Phys Eng Sci. 2021 Aug 9;379(2203):20200391. doi: 10.1098/rsta.2020.0391. Epub 2021 Jun 21.
2
Blood drop patterns: Formation and applications.
Adv Colloid Interface Sci. 2016 May;231:1-14. doi: 10.1016/j.cis.2016.01.008. Epub 2016 Feb 4.
3
Interfacial energy driven distinctive pattern formation during the drying of blood droplets.
J Colloid Interface Sci. 2020 Aug 1;573:307-316. doi: 10.1016/j.jcis.2020.04.008. Epub 2020 Apr 7.
4
Drying of bio-colloidal sessile droplets: Advances, applications, and perspectives.
Adv Colloid Interface Sci. 2023 Apr;314:102870. doi: 10.1016/j.cis.2023.102870. Epub 2023 Mar 9.
5
Microflow and crack formation patterns in drying sessile droplets of liposomes suspended in trehalose solutions.
Langmuir. 2008 Aug 5;24(15):7688-97. doi: 10.1021/la703835w. Epub 2008 Jul 10.
6
Influence of the Particle Concentration and Marangoni Flow on the Formation of Cellulose Nanocrystal Films.
Langmuir. 2017 Jan 10;33(1):228-234. doi: 10.1021/acs.langmuir.6b03724. Epub 2016 Dec 30.
7
Particle size and substrate wettability dependent patterns in dried pendant drops.
J Phys Condens Matter. 2021 Jan 13;33(2):024003. doi: 10.1088/1361-648X/abb64e.
8
Desiccation Patterns of Plasma Sessile Drops.
ACS Sens. 2019 Jun 28;4(6):1701-1709. doi: 10.1021/acssensors.9b00618. Epub 2019 May 31.
9
Colloidal transport phenomena of milk components during convective droplet drying.
Colloids Surf B Biointerfaces. 2011 Oct 15;87(2):255-66. doi: 10.1016/j.colsurfb.2011.05.026. Epub 2011 May 24.
10
Predicting coffee ring formation upon drying in droplets of particle suspensions.
J Colloid Interface Sci. 2021 Jun;591:52-57. doi: 10.1016/j.jcis.2021.01.092. Epub 2021 Feb 1.

引用本文的文献

1
Multi-cancer Detection Using Pattern Formation in Drying Body Fluids: A Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies.
Technol Cancer Res Treat. 2025 Jan-Dec;24:15330338251333994. doi: 10.1177/15330338251333994. Epub 2025 Sep 1.
2
Drying-Induced Salt Deposition Patterns as a Tool for Label-Free Protein Quantification.
Biosensors (Basel). 2025 Aug 9;15(8):520. doi: 10.3390/bios15080520.
3
Evaporation of a Reactive Nanofluid Sessile Drop: .
Langmuir. 2025 Jul 22;41(28):18730-18740. doi: 10.1021/acs.langmuir.5c01989. Epub 2025 Jul 9.
4
Front-Tracking and Gelation in Sessile Droplet Suspensions: What Can They Tell Us about Human Blood?
Biomacromolecules. 2024 Dec 9;25(12):7594-7607. doi: 10.1021/acs.biomac.4c00753. Epub 2024 Nov 1.

本文引用的文献

1
Nanocellulose Hydrogel for Blood Typing Tests.
ACS Appl Bio Mater. 2019 Jun 17;2(6):2355-2364. doi: 10.1021/acsabm.9b00080. Epub 2019 May 29.
2
Predicting coffee ring formation upon drying in droplets of particle suspensions.
J Colloid Interface Sci. 2021 Jun;591:52-57. doi: 10.1016/j.jcis.2021.01.092. Epub 2021 Feb 1.
3
Understanding of the role of dilution on evaporative deposition patterns of blood droplets over hydrophilic and hydrophobic substrates.
J Colloid Interface Sci. 2020 Nov 1;579:541-550. doi: 10.1016/j.jcis.2020.04.109. Epub 2020 Jun 12.
4
Radial Wicking of Biological Fluids in Paper.
Langmuir. 2020 Jul 21;36(28):8209-8217. doi: 10.1021/acs.langmuir.0c01318. Epub 2020 Jul 7.
5
Effect of protein adsorption on the radial wicking of blood droplets in paper.
J Colloid Interface Sci. 2018 Oct 15;528:116-123. doi: 10.1016/j.jcis.2018.05.037. Epub 2018 May 23.
6
Mechanisms of pattern formation from dried sessile drops.
Adv Colloid Interface Sci. 2018 Apr;254:22-47. doi: 10.1016/j.cis.2018.03.007. Epub 2018 Mar 24.
7
Drying drops : Drying drops containing solutes: From hydrodynamical to mechanical instabilities.
Eur Phys J E Soft Matter. 2018 Mar 19;41(3):32. doi: 10.1140/epje/i2018-11639-2.
8
A review on suppression and utilization of the coffee-ring effect.
Adv Colloid Interface Sci. 2018 Feb;252:38-54. doi: 10.1016/j.cis.2017.12.008. Epub 2018 Jan 2.
9
Recent advances in droplet wetting and evaporation.
Chem Soc Rev. 2018 Jan 22;47(2):558-585. doi: 10.1039/c6cs00902f.
10
Resolving an ostensible inconsistency in calculating the evaporation rate of sessile drops.
Adv Colloid Interface Sci. 2017 May;243:121-128. doi: 10.1016/j.cis.2016.05.015. Epub 2016 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验