Centro de Fisica Teórica e Computacional, Departamento de Fisica, Faculdade de Ciências , Universidade de Lisboa , Campo Grande P-1749-016 Lisboa , Portugal.
Department of Chemical Engineering , Columbia University , New York , New York 10027 , United States.
ACS Nano. 2018 Mar 27;12(3):2939-2947. doi: 10.1021/acsnano.8b00525. Epub 2018 Mar 16.
The propulsion of micro- and nanoparticles using ultrasound is an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. However, the physical mechanisms underlying acoustic propulsion are poorly understood, and our ability to transduce acoustic energy into different types of particle motions remains limited. Here, we show that the three-dimensional shape of a colloidal particle can be rationally engineered to direct desired particle motions powered by ultrasound. We investigate the dynamics of gold microplates with twisted star shape ( C symmetry) moving within the nodal plane of a uniform acoustic field at megahertz frequencies. By systematically perturbing the parametric shape of these "spinners", we quantify the relationship between the particle shape and its rotational motion. The experimental observations are reproduced and explained by hydrodynamic simulations that describe the steady streaming flows and particle motions induced by ultrasonic actuation. Our results suggest how particle shape can be used to design colloids capable of increasingly complex motions powered by ultrasound.
使用超声波推动微纳米颗粒是一种很有吸引力的策略,它可以利用生物相容性的能量输入来远程操控胶体物质。然而,超声推进的物理机制还没有被很好地理解,我们将声能转化为不同类型的颗粒运动的能力仍然有限。在这里,我们展示了胶体颗粒的三维形状可以被合理地设计,以引导超声驱动的所需颗粒运动。我们研究了在兆赫兹频率的均匀声场的节点平面内运动的具有扭曲星形状( C 对称)的金微板的动力学。通过系统地扰动这些“旋转器”的参数形状,我们量化了颗粒形状与其旋转运动之间的关系。实验观察结果通过描述由超声激励引起的稳态流动和颗粒运动的流体动力学模拟得到再现和解释。我们的结果表明,如何利用颗粒形状来设计能够通过超声驱动实现越来越复杂运动的胶体。