Dhatt-Gauthier Kiran, Livitz Dimitri, Bishop Kyle J M
Department of Chemical Engineering, Columbia University, New York, NY, USA.
Soft Matter. 2021 Nov 17;17(44):10128-10139. doi: 10.1039/d1sm01116b.
Self-propulsion of micro- and nanoparticles powered by ultrasound provides an attractive strategy for the remote manipulation of colloidal matter using biocompatible energy inputs. Quantitative understanding of particle motion and its dependence on size, shape, and composition requires accurate characterization of the acoustic field, which depends sensitively on the experimental setup. Here, we show how automated experiments based on Bayesian inference and design can accurately and efficiently characterize the acoustic field within resonant chambers used to propel acoustic nanomotors. Repeated cycles of observation, inference, and design (OID) are guided by a physical model that describes the rate at which levitating particles approach the nodal plane. Using video microscopy, we observe the relaxation of tracer particles to this plane following the application of the acoustic field. We use sequential Monte Carlo methods to infer model parameters such as the amplitude and frequency of the resonant chamber while accounting for particle-level measurement noise and population-level heterogeneity in the field. Guided by simulated outcomes, we select the optimal design for the next experiment as to maximize the information gain in the relevant parameters. We show how this iterative process serves to discriminate between competing hypotheses and efficiently converges to accurate parameter estimates using only few automated experiments. We discuss the need for model criticism to ensure the validity of the guiding model throughout automated cycles of observation, inference, and design. This work demonstrates how Bayesian methods can learn the parameters of nonlinear, hierarchical models used to describe video microscopy data of active colloids.
由超声驱动的微米和纳米粒子的自推进为使用生物相容性能量输入远程操纵胶体物质提供了一种有吸引力的策略。对粒子运动及其对尺寸、形状和组成的依赖性进行定量理解需要对声场进行精确表征,而声场又敏感地依赖于实验装置。在这里,我们展示了基于贝叶斯推理和设计的自动化实验如何能够准确、高效地表征用于驱动声学纳米马达的共振腔内的声场。观察、推理和设计(OID)的重复循环由一个物理模型指导,该模型描述了悬浮粒子接近节点平面的速率。使用视频显微镜,我们观察到在施加声场后示踪粒子向该平面的弛豫。我们使用序贯蒙特卡罗方法来推断模型参数,如共振腔的振幅和频率,同时考虑粒子级测量噪声和场中的总体级异质性。在模拟结果的指导下,我们为下一个实验选择最优设计,以最大化相关参数中的信息增益。我们展示了这个迭代过程如何用于区分相互竞争的假设,并仅通过少量自动化实验有效地收敛到准确的参数估计。我们讨论了模型批评的必要性,以确保在观察、推理和设计的整个自动化循环中指导模型的有效性。这项工作展示了贝叶斯方法如何能够学习用于描述活性胶体视频显微镜数据的非线性分层模型的参数。