Cao Xiaoqing, Liang Kaixiang, Peng Feifei, Kong Xianggui, Shi Wenying
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Beijing, 100029, P. R. China.
Adv Sci (Weinh). 2025 Aug;12(32):e06797. doi: 10.1002/advs.202506797. Epub 2025 Jun 5.
Constructing built-in electric fields (IEF) in homomeric supramolecular assembly (SA) offers an exciting research avenue. To boost dipole, the introduction of a functional side chain in the monomer is essential. Unfortunately, this disrupts the monomer planarity, inevitably increasing intermolecular distance, which is contradictory to achieving high IEF. Here, by means of the confinement of layered double hydroxide (LDH), various monomers (naphthalene and perylene diimide derivatives) successfully form metastable SA with smaller intermolecular distances than in crystals. The IEF enhancement value can reach 11.8 times, enabling a 71.52% charge separation efficiency and a 78.10% total organic carbon (TOC) removal rate in phenol degradation, presenting state-of-the-art results. Mechanism elucidates LDH confinement overcomes the energy barrier associated with the ordered and close packing of monomers, moving monomer away from the thermodynamic equilibrium state. The universality of this approach will pave the way for exploring other multifunctional monomers, thereby fostering advancement in material science, chemical synthesis, and photo-conversion.
在同聚超分子组装体(SA)中构建内置电场(IEF)提供了一条令人兴奋的研究途径。为了增强偶极子,在单体中引入功能性侧链至关重要。不幸的是,这会破坏单体的平面性,不可避免地增加分子间距离,这与实现高IEF相矛盾。在此,借助层状双氢氧化物(LDH)的限制作用,各种单体(萘和苝二酰亚胺衍生物)成功形成了亚稳态SA,其分子间距离比晶体中的更小。IEF增强值可达11.8倍,在苯酚降解中实现了71.52%的电荷分离效率和78.10%的总有机碳(TOC)去除率,呈现出领先的结果。机理表明,LDH限制作用克服了与单体有序紧密堆积相关的能量障碍,使单体偏离热力学平衡态。这种方法的通用性将为探索其他多功能单体铺平道路,从而推动材料科学、化学合成和光转换领域的发展。