Rosenberg Masha M, Redfield Alfred G, Roberts Mary F, Hedstrom Lizbeth
Department of Biology , Brandeis University , MS009, 415 South Street , Waltham , Massachusetts 02453-9110 , United States.
Department of Biochemistry , Brandeis University , MS009, 415 South Street , Waltham , Massachusetts 02453-9110 , United States.
Biochemistry. 2018 Jun 5;57(22):3146-3154. doi: 10.1021/acs.biochem.8b00142. Epub 2018 Mar 26.
The ability of enzymes to modulate the dynamics of bound substrates and cofactors is a critical feature of catalysis, but the role of dynamics has largely been approached from the perspective of the protein. Here, we use an underappreciated NMR technique, subtesla high-resolution field-cycling P NMR relaxometry, to interrogate the dynamics of enzyme bound substrates and cofactors in guanosine-5'-monophosphate reductase (GMPR). These experiments reveal distinct binding modes and dynamic profiles associated with the P nuclei in the Michaelis complexes for the deamination and hydride transfer steps of the catalytic cycle. Importantly, the substrate is constrained and the cofactor is more dynamic in the deamination complex E·GMP·NADP, whereas the substrate is more dynamic and the cofactor is constrained in the hydride transfer complex E·IMP·NADP. The presence of DO perturbed the relaxation of the P nuclei in E·IMP·NADP but not in E·GMP·NADP, providing further evidence of distinct binding modes with different dynamic properties. dIMP and dGMP are poor substrates, and the dynamics of the cofactor complexes of dGMP/dIMP are disregulated relative to GMP/IMP. The substrate 2'-OH interacts with Asp219, and mutation of Asp219 to Ala decreases the value of V by a factor of 30. Counterintuitively, loss of Asp219 makes both substrates and cofactors less dynamic. These observations suggest that the interactions between the substrate 2'-OH and Asp219 coordinate the dynamic properties of the Michaelis complexes, and these dynamics are important for progression through the catalytic cycle.
酶调节结合底物和辅因子动力学的能力是催化作用的一个关键特征,但动力学的作用在很大程度上是从蛋白质的角度来探讨的。在这里,我们使用一种未得到充分重视的核磁共振技术——亚特斯拉高分辨率场循环磷核磁共振弛豫测量法,来研究鸟苷-5'-单磷酸还原酶(GMPR)中酶结合底物和辅因子的动力学。这些实验揭示了催化循环中脱氨和氢化物转移步骤的米氏复合物中与磷核相关的不同结合模式和动态特征。重要的是,在脱氨复合物E·GMP·NADP中底物受到限制而辅因子更具动态性,而在氢化物转移复合物E·IMP·NADP中底物更具动态性且辅因子受到限制。DO的存在扰乱了E·IMP·NADP中磷核的弛豫,但未扰乱E·GMP·NADP中的,这进一步证明了具有不同动态特性的不同结合模式。dIMP和dGMP是较差的底物,相对于GMP/IMP,dGMP/dIMP的辅因子复合物的动力学失调。底物2'-OH与Asp219相互作用,将Asp219突变为Ala会使V值降低30倍。与直觉相反,Asp219的缺失使底物和辅因子的动态性都降低。这些观察结果表明,底物2'-OH与Asp219之间的相互作用协调了米氏复合物的动态特性,并且这些动力学对于催化循环的进行很重要。