Suppr超能文献

高分辨率P场循环核磁共振弛豫测量揭示的鸟苷-5'-单磷酸还原酶复合物的动力学特性

Dynamic Characteristics of Guanosine-5'-monophosphate Reductase Complexes Revealed by High-Resolution P Field-Cycling NMR Relaxometry.

作者信息

Rosenberg Masha M, Redfield Alfred G, Roberts Mary F, Hedstrom Lizbeth

机构信息

Department of Biology , Brandeis University , MS009, 415 South Street , Waltham , Massachusetts 02453-9110 , United States.

Department of Biochemistry , Brandeis University , MS009, 415 South Street , Waltham , Massachusetts 02453-9110 , United States.

出版信息

Biochemistry. 2018 Jun 5;57(22):3146-3154. doi: 10.1021/acs.biochem.8b00142. Epub 2018 Mar 26.

Abstract

The ability of enzymes to modulate the dynamics of bound substrates and cofactors is a critical feature of catalysis, but the role of dynamics has largely been approached from the perspective of the protein. Here, we use an underappreciated NMR technique, subtesla high-resolution field-cycling P NMR relaxometry, to interrogate the dynamics of enzyme bound substrates and cofactors in guanosine-5'-monophosphate reductase (GMPR). These experiments reveal distinct binding modes and dynamic profiles associated with the P nuclei in the Michaelis complexes for the deamination and hydride transfer steps of the catalytic cycle. Importantly, the substrate is constrained and the cofactor is more dynamic in the deamination complex E·GMP·NADP, whereas the substrate is more dynamic and the cofactor is constrained in the hydride transfer complex E·IMP·NADP. The presence of DO perturbed the relaxation of the P nuclei in E·IMP·NADP but not in E·GMP·NADP, providing further evidence of distinct binding modes with different dynamic properties. dIMP and dGMP are poor substrates, and the dynamics of the cofactor complexes of dGMP/dIMP are disregulated relative to GMP/IMP. The substrate 2'-OH interacts with Asp219, and mutation of Asp219 to Ala decreases the value of V by a factor of 30. Counterintuitively, loss of Asp219 makes both substrates and cofactors less dynamic. These observations suggest that the interactions between the substrate 2'-OH and Asp219 coordinate the dynamic properties of the Michaelis complexes, and these dynamics are important for progression through the catalytic cycle.

摘要

酶调节结合底物和辅因子动力学的能力是催化作用的一个关键特征,但动力学的作用在很大程度上是从蛋白质的角度来探讨的。在这里,我们使用一种未得到充分重视的核磁共振技术——亚特斯拉高分辨率场循环磷核磁共振弛豫测量法,来研究鸟苷-5'-单磷酸还原酶(GMPR)中酶结合底物和辅因子的动力学。这些实验揭示了催化循环中脱氨和氢化物转移步骤的米氏复合物中与磷核相关的不同结合模式和动态特征。重要的是,在脱氨复合物E·GMP·NADP中底物受到限制而辅因子更具动态性,而在氢化物转移复合物E·IMP·NADP中底物更具动态性且辅因子受到限制。DO的存在扰乱了E·IMP·NADP中磷核的弛豫,但未扰乱E·GMP·NADP中的,这进一步证明了具有不同动态特性的不同结合模式。dIMP和dGMP是较差的底物,相对于GMP/IMP,dGMP/dIMP的辅因子复合物的动力学失调。底物2'-OH与Asp219相互作用,将Asp219突变为Ala会使V值降低30倍。与直觉相反,Asp219的缺失使底物和辅因子的动态性都降低。这些观察结果表明,底物2'-OH与Asp219之间的相互作用协调了米氏复合物的动态特性,并且这些动力学对于催化循环的进行很重要。

相似文献

1
Dynamic Characteristics of Guanosine-5'-monophosphate Reductase Complexes Revealed by High-Resolution P Field-Cycling NMR Relaxometry.
Biochemistry. 2018 Jun 5;57(22):3146-3154. doi: 10.1021/acs.biochem.8b00142. Epub 2018 Mar 26.
2
Substrate and Cofactor Dynamics on Guanosine Monophosphate Reductase Probed by High Resolution Field Cycling 31P NMR Relaxometry.
J Biol Chem. 2016 Oct 28;291(44):22988-22998. doi: 10.1074/jbc.M116.739516. Epub 2016 Sep 9.
3
Enzyme-Substrate-Cofactor Dynamical Networks Revealed by High-Resolution Field Cycling Relaxometry.
Biochemistry. 2020 Jun 30;59(25):2359-2370. doi: 10.1021/acs.biochem.0c00212. Epub 2020 Jun 15.
4
Cofactor mobility determines reaction outcome in the IMPDH and GMPR (β-α)8 barrel enzymes.
Nat Chem Biol. 2011 Oct 30;7(12):950-8. doi: 10.1038/nchembio.693.
5
High Resolution P Field Cycling NMR Reveals Unsuspected Features of Enzyme-Substrate-Cofactor Dynamics.
Front Mol Biosci. 2022 Mar 31;9:865519. doi: 10.3389/fmolb.2022.865519. eCollection 2022.
8
The dynamic determinants of reaction specificity in the IMPDH/GMPR family of (β/α)(8) barrel enzymes.
Crit Rev Biochem Mol Biol. 2012 May-Jun;47(3):250-63. doi: 10.3109/10409238.2012.656843. Epub 2012 Feb 15.

引用本文的文献

1
High Resolution P Field Cycling NMR Reveals Unsuspected Features of Enzyme-Substrate-Cofactor Dynamics.
Front Mol Biosci. 2022 Mar 31;9:865519. doi: 10.3389/fmolb.2022.865519. eCollection 2022.
2
Phosphorylation of guanosine monophosphate reductase triggers a GTP-dependent switch from pro- to anti-oncogenic function of EPHA4.
Cell Chem Biol. 2022 Jun 16;29(6):970-984.e6. doi: 10.1016/j.chembiol.2022.01.007. Epub 2022 Feb 10.
3
Enzyme-Substrate-Cofactor Dynamical Networks Revealed by High-Resolution Field Cycling Relaxometry.
Biochemistry. 2020 Jun 30;59(25):2359-2370. doi: 10.1021/acs.biochem.0c00212. Epub 2020 Jun 15.

本文引用的文献

1
Substrate and Cofactor Dynamics on Guanosine Monophosphate Reductase Probed by High Resolution Field Cycling 31P NMR Relaxometry.
J Biol Chem. 2016 Oct 28;291(44):22988-22998. doi: 10.1074/jbc.M116.739516. Epub 2016 Sep 9.
3
Enzyme architecture: on the importance of being in a protein cage.
Curr Opin Chem Biol. 2014 Aug;21:1-10. doi: 10.1016/j.cbpa.2014.03.001. Epub 2014 Mar 31.
4
Cytotoxic amphiphiles and phosphoinositides bind to two discrete sites on the Akt1 PH domain.
Biochemistry. 2014 Jan 28;53(3):462-72. doi: 10.1021/bi401720v. Epub 2014 Jan 10.
6
Cofactor mobility determines reaction outcome in the IMPDH and GMPR (β-α)8 barrel enzymes.
Nat Chem Biol. 2011 Oct 30;7(12):950-8. doi: 10.1038/nchembio.693.
7
Defining specific lipid binding sites for a peripheral membrane protein in situ using subtesla field-cycling NMR.
J Biol Chem. 2010 Aug 27;285(35):26916-26922. doi: 10.1074/jbc.M110.123083. Epub 2010 Jun 24.
8
Determining the catalytic role of remote substrate binding interactions in ketosteroid isomerase.
Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14271-5. doi: 10.1073/pnas.0901032106. Epub 2009 Aug 12.
10
Crystal structure of human guanosine monophosphate reductase 2 (GMPR2) in complex with GMP.
J Mol Biol. 2006 Feb 3;355(5):980-8. doi: 10.1016/j.jmb.2005.11.047. Epub 2005 Dec 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验