Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, 10691 Stockholm, Sweden.
Department of Physics, Gothenburg University, 41296 Gothenburg, Sweden.
Phys Rev E. 2018 Feb;97(2-1):023105. doi: 10.1103/PhysRevE.97.023105.
We use direct numerical simulations to calculate the joint probability density function of the relative distance R and relative radial velocity component V_{R} for a pair of heavy inertial particles suspended in homogeneous and isotropic turbulent flows. At small scales the distribution is scale invariant, with a scaling exponent that is related to the particle-particle correlation dimension in phase space, D_{2}. It was argued [K. Gustavsson and B. Mehlig, Phys. Rev. E 84, 045304 (2011)PLEEE81539-375510.1103/PhysRevE.84.045304; J. Turbul. 15, 34 (2014)1468-524810.1080/14685248.2013.875188] that the scale invariant part of the distribution has two asymptotic regimes: (1) |V_{R}|≪R, where the distribution depends solely on R, and (2) |V_{R}|≫R, where the distribution is a function of |V_{R}| alone. The probability distributions in these two regimes are matched along a straight line: |V_{R}|=z^{}R. Our simulations confirm that this is indeed correct. We further obtain D_{2} and z^{} as a function of the Stokes number, St. The former depends nonmonotonically on St with a minimum at about St≈0.7 and the latter has only a weak dependence on St.
我们使用直接数值模拟来计算悬浮在均匀各向同性湍流中的一对重惯性粒子的相对距离 R 和相对径向速度分量 V_{R} 的联合概率密度函数。在小尺度下,分布是标度不变的,具有与相空间中粒子-粒子相关维数 D_{2} 相关的标度指数。有人认为[K. Gustavsson 和 B. Mehlig, Phys. Rev. E 84, 045304 (2011)PLEEE81539-375510.1103/PhysRevE.84.045304; J. Turbul. 15, 34 (2014)1468-524810.1080/14685248.2013.875188],分布的标度不变部分有两个渐近区域:(1)|V_{R}|≪R,其中分布仅取决于 R,(2)|V_{R}|≫R,其中分布是|V_{R}|的函数。这两个区域的概率分布沿着一条直线匹配:|V_{R}|=z^{}R。我们的模拟证实了这一点。我们进一步获得了 D_{2} 和 z^{}作为斯托克斯数 St 的函数。前者对 St 的依赖性非单调,在大约 St≈0.7 时达到最小值,后者对 St 的依赖性很弱。