从非线性福克-普朗克方程到弗拉索夫描述,再回到非线性福克-普朗克方程:带有阻力的约束相互作用粒子。

From the nonlinear Fokker-Planck equation to the Vlasov description and back: Confined interacting particles with drag.

机构信息

CeBio y Secretaría de Investigación, Universidad Nacional del Noroeste de la Província de Buenos Aires, UNNOBA-Conicet, Roque Saenz Peña 456, Junin, Argentina.

Centro Brasileiro de Pesquisas Físicas and National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil.

出版信息

Phys Rev E. 2018 Feb;97(2-1):022120. doi: 10.1103/PhysRevE.97.022120.

Abstract

Nonlinear Fokker-Planck equations endowed with power-law diffusion terms have proven to be valuable tools for the study of diverse complex systems in physics, biology, and other fields. The nonlinearity appearing in these evolution equations can be interpreted as providing an effective description of a system of particles interacting via short-range forces while performing overdamped motion under the effect of an external confining potential. This point of view has been recently applied to the study of thermodynamical features of interacting vortices in type II superconductors. In the present work we explore an embedding of the nonlinear Fokker-Planck equation within a Vlasov equation, thus incorporating inertial effects to the concomitant particle dynamics. Exact time-dependent solutions of the q-Gaussian form (with compact support) are obtained for the Vlasov equation in the case of quadratic confining potentials.

摘要

具有幂律扩散项的非线性福克-普朗克方程已被证明是研究物理学、生物学和其他领域中各种复杂系统的有用工具。这些演化方程中的非线性可以被解释为提供了一个有效的描述,即通过短程力相互作用的粒子系统在外部约束势的影响下进行过阻尼运动。这种观点最近被应用于研究 II 型超导体中相互作用涡旋的热力学特性。在目前的工作中,我们探索了将非线性福克-普朗克方程嵌入到一个弗拉索夫方程中,从而将惯性效应纳入到伴随的粒子动力学中。在二次约束势的情况下,我们得到了弗拉索夫方程的 q-高斯形式(具有紧凑支撑)的精确时间相关解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索