Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile.
Université de la Côte d'Azur, OCA, CNRS, Lagrange, Boîte Postale 4229, 06304 Nice Cedex 4, France.
Phys Rev E. 2018 Feb;97(2-1):020201. doi: 10.1103/PhysRevE.97.020201.
An exact result concerning the energy transfers between nonlinear waves of a thin elastic plate is derived. Following Kolmogorov's original ideas in hydrodynamical turbulence, but applied to the Föppl-von Kármán equation for thin plates, the corresponding Kármán-Howarth-Monin relation and an equivalent of the 4/5-Kolmogorov's law is derived. A third-order structure function involving increments of the amplitude, velocity, and the Airy stress function of a plate, is proven to be equal to -ɛℓ, where ℓ is a length scale in the inertial range at which the increments are evaluated and ɛ the energy dissipation rate. Numerical data confirm this law. In addition, a useful definition of the energy fluxes in Fourier space is introduced and proven numerically to be flat in the inertial range. The exact results derived in this Rapid Communication are valid for both weak and strong wave turbulence. They could be used as a theoretical benchmark of new wave-turbulence theories and to develop further analogies with hydrodynamical turbulence.
导出了关于薄弹性板非线性波之间能量传递的精确结果。受 Kolmogorov 在水动力湍流中的原始思想启发,但应用于薄板的 Föppl-von Kármán 方程,得到了相应的 Kármán-Howarth-Monin 关系和等效的 4/5-Kolmogorov 定律。证明了一个涉及板的振幅、速度和 Airy 应力函数增量的三阶结构函数等于-ɛℓ,其中 ℓ 是惯性范围内评估增量的长度尺度,ɛ 是能量耗散率。数值数据证实了这一规律。此外,引入了一种在傅立叶空间中能量通量的有用定义,并通过数值证明在惯性范围内是平坦的。本快速通讯中导出的精确结果对弱波和强波湍流都是有效的。它们可作为新的波湍流理论的理论基准,并进一步与水动力湍流进行类比。