Institute of Technology, Renewables and Energy-efficient Engineering (TREE), Bonn-Rhein-Sieg University of Applied Sciences, Grantham-Allee 20, 53757 Sankt Augustin, Germany.
Department of Mechanical Engineering, University of Siegen, Paul-Bonatz-Straße 9-11, 57076 Siegen-Weidenau, Germany.
Phys Rev E. 2018 Feb;97(2-1):023313. doi: 10.1103/PhysRevE.97.023313.
Pseudopotential-based lattice Boltzmann models are widely used for numerical simulations of multiphase flows. In the special case of multicomponent systems, the overall dynamics are characterized by the conservation equations for mass and momentum as well as an additional advection diffusion equation for each component. In the present study, we investigate how the latter is affected by the forcing scheme, i.e., by the way the underlying interparticle forces are incorporated into the lattice Boltzmann equation. By comparing two model formulations for pure multicomponent systems, namely the standard model [X. Shan and G. D. Doolen, J. Stat. Phys. 81, 379 (1995)JSTPBS0022-471510.1007/BF02179985] and the explicit forcing model [M. L. Porter et al., Phys. Rev. E 86, 036701 (2012)PLEEE81539-375510.1103/PhysRevE.86.036701], we reveal that the diffusion characteristics drastically change. We derive a generalized, potential function-dependent expression for the transition point from the miscible to the immiscible regime and demonstrate that it is shifted between the models. The theoretical predictions for both the transition point and the mutual diffusion coefficient are validated in simulations of static droplets and decaying sinusoidal concentration waves, respectively. To show the universality of our analysis, two common and one new potential function are investigated. As the shift in the diffusion characteristics directly affects the interfacial properties, we additionally show that phenomena related to the interfacial tension such as the modeling of contact angles are influenced as well.
基于赝势的格子玻尔兹曼模型广泛应用于多相流的数值模拟。在多组分系统的特殊情况下,整体动力学由质量和动量守恒方程以及每个组分的附加平流扩散方程来描述。在本研究中,我们研究了后者如何受到强迫方案的影响,即底层粒子间力如何被纳入格子玻尔兹曼方程。通过比较两种纯多组分系统的模型公式,即标准模型[X. Shan 和 G. D. Doolen,J. Stat. Phys. 81, 379 (1995)JSTPBS0022-471510.1007/BF02179985]和显式强迫模型[M. L. Porter 等人,Phys. Rev. E 86, 036701 (2012)PLEEE81539-375510.1103/PhysRevE.86.036701],我们揭示了扩散特性的巨大变化。我们推导出了一个通用的、与势函数相关的表达式,用于从可混相到不可混相的转变点,并证明了该表达式在模型之间发生了偏移。通过模拟静态液滴和衰减正弦浓度波,分别验证了转变点和互扩散系数的理论预测。为了展示我们分析的通用性,研究了两种常见的和一种新的势函数。由于扩散特性的偏移直接影响界面性质,我们还表明,与界面张力相关的现象,如接触角的建模,也受到影响。