Suppr超能文献

基于 L 范数约束的有向网络最小代价控制的外部控制源分配

L norm constraint based external control source allocation for the minimum cost control of directed networks.

机构信息

Department of Precision Instrument, Center for Brain Inspired Computing Research, Tsinghua University, Beijing, 100084, China; Department of Electrical and Computer Engineering, University of California, Santa Barbara, CA 93106, USA.

Department of Precision Instrument, Center for Brain Inspired Computing Research, Tsinghua University, Beijing, 100084, China.

出版信息

ISA Trans. 2018 May;76:88-96. doi: 10.1016/j.isatra.2018.03.009. Epub 2018 Mar 14.

Abstract

Locating a pre-given number of key nodes that are connected to external control sources so as to minimize the cost of controlling a directed network ẋ(t)=Ax(t)+Bu(t), known as the minimum cost control problem, is of critical importance. Considering a network consisting of N nodes with M external control sources, the state of art techniques employ iterative searching to determine the input matrix B that characterizes how nodes are connected to external control sources, in a matrix space R. The nodes having M largest values of a defined importance index are selected as key nodes. However, such techniques may suffer from large performance penalty in some networks due to the diversity of real-life networks. To address this outstanding issue, we propose an iterative method, termed "L-norm constraint based projected gradient method" (LPGM). We probabilistically search the input matrix in each iteration by restricting its L norm as a fixed value M, which implies that each control source is always only connected to a single key node during the whole searching process. Simulation results show that the solution always efficiently approaches a suboptimal key node set in a few iterations. These results provide a new point of view regarding the key nodes selection in the minimum cost control of directed networks.

摘要

定位与外部控制源相连接的给定数量的关键节点,以最小化控制有向网络ẋ(t)=Ax(t)+Bu(t)的成本,这被称为最小成本控制问题,是至关重要的。考虑由 N 个节点和 M 个外部控制源组成的网络,现有的技术采用迭代搜索来确定输入矩阵 B,该矩阵描述了节点与外部控制源的连接方式,在矩阵空间 R 中。选择具有定义的重要性指数的 M 个最大值的节点作为关键节点。然而,由于现实生活中网络的多样性,这些技术在某些网络中可能会遭受较大的性能损失。为了解决这个突出的问题,我们提出了一种迭代方法,称为“基于 L-范数约束的投影梯度法”(LPGM)。我们通过将输入矩阵的 L 范数限制为固定值 M 来在每次迭代中概率地搜索输入矩阵,这意味着在整个搜索过程中,每个控制源始终仅连接到一个关键节点。仿真结果表明,该方法在几次迭代内总能有效地逼近一个次优的关键节点集。这些结果为有向网络的最小成本控制中的关键节点选择提供了一个新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验