Suppr超能文献

胶束增溶中单一组分和混合非离子表面活性剂的预测模型。

Predictive Modeling of Micellar Solubilization by Single and Mixed Nonionic Surfactants.

机构信息

Drug Product Development, Research and Development, AbbVie Inc., North Chicago, Illinois 60064.

Science & Technology, Operations, AbbVie, Inc., North Chicago, Illinois 60064.

出版信息

J Pharm Sci. 2018 Aug;107(8):2079-2090. doi: 10.1016/j.xphs.2018.03.004. Epub 2018 Mar 14.

Abstract

Micellar solubilization is an important concept in the delivery of poorly water-soluble drugs. The rational selection of the type and the amount of surfactant to be incorporated in a formulation require comprehensive solubility studies. These studies are time and material demanding, both of which are scarce, especially during late discovery and early development stages. We hypothesized that, if the solubilization mechanism or molecular interaction is similar, the solubilization capacity ratio (a newly defined parameter) is dictated by micellar structures, independent of drugs. We tested this hypothesis by performing solubility studies using 8 commonly used nonionic surfactants and 17 insoluble compounds with diverse characteristics. The results show a striking constant solubilization capacity ratio among the 8 nonionic surfactants, which allow us to develop predictive solubility models for both single and mixed surfactant systems. The vast majority of the predicted solubility values, using our developed models, fall within 2-fold of the experimentally determined values with high correlation coefficients. As expected, systems involving ionic surfactant sodium dodecyl sulfate, used as a negative control, do not follow this trend. Deviations from the model, observed in this study or envisioned, were discussed. In conclusion, we have established predictive models that are capable of predicting solubility in a wide range of nonionic micellar solutions with only 1 experimental measurement. The application of such a model will significantly reduce resource and greatly enhance drug product development efficiency.

摘要

胶束增溶是递运难溶性药物的一个重要概念。合理选择制剂中要加入的表面活性剂的类型和用量需要全面的溶解度研究。这些研究既耗时又耗材料,在药物发现的后期和早期开发阶段,这两者都是稀缺的资源。我们假设,如果增溶机制或分子相互作用相似,则增溶能力比(新定义的参数)由胶束结构决定,而与药物无关。我们使用 8 种常用的非离子表面活性剂和 17 种具有不同特性的不溶性化合物进行溶解度研究来验证这一假设。结果表明,8 种非离子表面活性剂之间存在惊人的恒定增溶能力比,这使我们能够为单一和混合表面活性剂系统开发预测性溶解度模型。使用我们开发的模型预测的溶解度值绝大多数都在实验确定值的 2 倍以内,具有很高的相关系数。正如预期的那样,作为负对照的离子表面活性剂十二烷基硫酸钠的系统不遵循这一趋势。本文或设想中观察到的偏离模型的情况进行了讨论。总之,我们已经建立了预测模型,仅通过 1 次实验测量就能够预测广泛的非离子胶束溶液中的溶解度。这种模型的应用将大大减少资源并极大地提高药物产品开发的效率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验