Laboratorio de Farmacologia, Departamento de Ciencias de la Salud, DCBS, Universidad Autonoma Metropolitana-Iztapalapa (UAM-I), Avenida San Rafael Atlixco 186, A.P. 55-535, C.P. 09340, Mexico City, Mexico.
Unidad de Investigacion Medica en Bioquimica (UIM), Hospital de Especialidades, Centro Medico Nacional Siglo XXI. IMSS, Av. Cuauhtemoc 330, Col. Doctores, Del. Cuauhtemoc, Mexico City, Mexico.
Biomed Pharmacother. 2018 Jun;102:120-131. doi: 10.1016/j.biopha.2018.03.048. Epub 2018 Mar 22.
Glycine modulates inflammatory processes mediated by macrophages and adipocytes through decreasing the secretion of TNF-α, IL-6, and leptin, while increasing adiponectin. These effects have been associated with the inactivation of NF-κB in response to TNF-α, across an increase of its inhibitor IκB-α in adipocytes. However, glycine upstream mainly influences the IκB kinase (IKK) complex, a multi-protein kinase complex considered a critical point in regulation of the NF-κB pathway; whether that is responsible for the TNF-α-induced phosphorylation of IkB has not been explored. Additionally, although previous studies have described glycine interactions with specific receptors (GlyR) in different immune system cell types, it is currently unknown whether adipocytes present GlyR. In this research, participation of the IKK-α/β complex in the inhibition of the TNF-α/NF-κB pathway by glycine was evaluated and associated with the synthesis and secretion of inflammatory cytokines in 3T3-L1 adipocytes. Furthermore, we also explored GlyR expression, its localization on the plasmatic membrane, intracellular calcium concentrations [Ca] and strychnine antagonist action over the GlyR in these cells. Glycine decreased the IKK-α/β complex and the phosphorylation of NF-κB, diminishing the expression and secretion of IL-6 and TNF-α, but increasing that of adiponectin. GlyR expression and its fluorescence in the plasma membrane were increased in the presence of glycine. In addition, glycine decreased [Ca]; whereas strychnine + glycine treatment inhibited the activation of NF-κB observed with glycine. In conclusion, the reduction of TNF-α and IL-6 and suppression of the TNF-α/NF-κB pathway by glycine may be explained in part by inhibition of the IKK-α/β complex, with a possible participation of GlyR in 3T3-L1 adipocytes.
甘氨酸通过减少 TNF-α、IL-6 和瘦素的分泌,同时增加脂联素,来调节巨噬细胞和脂肪细胞介导的炎症过程。这些作用与 TNF-α 反应中 NF-κB 的失活有关,在脂肪细胞中,其抑制剂 IκB-α 增加。然而,甘氨酸上游主要影响 IκB 激酶 (IKK) 复合物,IKK 是一种多蛋白激酶复合物,被认为是 NF-κB 途径调节的关键点;是否这是导致 TNF-α 诱导的 IkB 磷酸化的原因,尚未得到探索。此外,尽管先前的研究已经描述了甘氨酸与不同免疫细胞类型中的特定受体 (GlyR) 的相互作用,但目前尚不清楚脂肪细胞是否存在 GlyR。在这项研究中,评估了 IKK-α/β 复合物在甘氨酸抑制 TNF-α/NF-κB 途径中的作用,并与 3T3-L1 脂肪细胞中炎症细胞因子的合成和分泌相关。此外,我们还探索了 GlyR 的表达、其在质膜上的定位、细胞内钙离子浓度 [Ca] 和番木鳖碱对这些细胞中 GlyR 的拮抗作用。甘氨酸减少了 IKK-α/β 复合物和 NF-κB 的磷酸化,减少了 IL-6 和 TNF-α 的表达和分泌,但增加了脂联素的表达和分泌。甘氨酸存在时,GlyR 的表达及其在质膜上的荧光增加。此外,甘氨酸降低了 [Ca];而番木鳖碱+甘氨酸处理抑制了甘氨酸观察到的 NF-κB 的激活。总之,甘氨酸对 TNF-α 和 IL-6 的减少以及对 TNF-α/NF-κB 途径的抑制,部分可能是通过抑制 IKK-α/β 复合物来解释的,3T3-L1 脂肪细胞中 GlyR 可能参与其中。