Suppr超能文献

使用全场光学相干断层扫描技术进行高分辨率人眼角膜成像。

high resolution human corneal imaging using full-field optical coherence tomography.

作者信息

Mazlin Viacheslav, Xiao Peng, Dalimier Eugénie, Grieve Kate, Irsch Kristina, Sahel José-Alain, Fink Mathias, Boccara A Claude

机构信息

Institute Langevin, ESPCI PARIS, PSL Research University, 1 Rue Jussieu, Paris, 75005, France.

LLTech SAS, 29 Rue du Faubourg Saint Jacques, Paris, 75014, France.

出版信息

Biomed Opt Express. 2018 Jan 10;9(2):557-568. doi: 10.1364/BOE.9.000557. eCollection 2018 Feb 1.

Abstract

We present the first full-field optical coherence tomography (FFOCT) device capable of imaging of the human cornea. We obtained images of the epithelial structures, Bowman's layer, sub-basal nerve plexus (SNP), anterior and posterior stromal keratocytes, stromal nerves, Descemet's membrane and endothelial cells with visible nuclei. Images were acquired with a high lateral resolution of 1.7 µm and relatively large field-of-view of 1.26 mm x 1.26 mm - a combination, which, to the best of our knowledge, has not been possible with other human eye imaging methods. The latter together with a contactless operation, make FFOCT a promising candidate for becoming a new tool in ophthalmic diagnostics.

摘要

我们展示了首款能够对人眼角膜进行成像的全场光学相干断层扫描(FFOCT)设备。我们获得了上皮结构、Bowman层、基底神经丛(SNP)、前、后基质角膜细胞、基质神经、Descemet膜和可见细胞核的内皮细胞的图像。图像采集的横向分辨率高达1.7 µm,视野相对较大,为1.26 mm x 1.26 mm——据我们所知,其他人类眼部成像方法无法实现这种组合。后者与非接触式操作一起,使FFOCT成为眼科诊断新工具的一个有前途的候选者。

相似文献

1
high resolution human corneal imaging using full-field optical coherence tomography.
Biomed Opt Express. 2018 Jan 10;9(2):557-568. doi: 10.1364/BOE.9.000557. eCollection 2018 Feb 1.
3
Full-field optical coherence tomography of human donor and pathological corneas.
Curr Eye Res. 2015 May;40(5):526-34. doi: 10.3109/02713683.2014.935444. Epub 2014 Sep 24.
4
5
Ultrahigh-resolution OCT imaging of the human cornea.
Biomed Opt Express. 2017 Jan 30;8(2):1221-1239. doi: 10.1364/BOE.8.001221. eCollection 2017 Feb 1.
6
Sub-micrometer axial resolution OCT for imaging of the cellular structure of healthy and keratoconic human corneas.
Biomed Opt Express. 2017 Jan 12;8(2):800-812. doi: 10.1364/BOE.8.000800. eCollection 2017 Feb 1.
9
Swelling of the human cornea revealed by high-speed, ultrahigh-resolution optical coherence tomography.
Invest Ophthalmol Vis Sci. 2010 Sep;51(9):4579-84. doi: 10.1167/iovs.09-4676. Epub 2010 Apr 30.
10
Fourier-domain optical coherence tomography imaging in keratoconus: a corneal structural classification.
Ophthalmology. 2013 Dec;120(12):2403-2412. doi: 10.1016/j.ophtha.2013.05.027. Epub 2013 Aug 9.

引用本文的文献

1
Transmission interference microscopy of anterior human eye.
Nat Commun. 2025 Aug 22;16(1):7838. doi: 10.1038/s41467-025-62718-6.
2
Non-contact confocal calcium imaging of murine corneal nerves.
Biomed Opt Express. 2024 Dec 3;16(1):1-11. doi: 10.1364/BOE.543333. eCollection 2025 Jan 1.
4
Advancements in high-resolution imaging of the iridocorneal angle.
Front Ophthalmol (Lausanne). 2023 Aug 21;3:1229670. doi: 10.3389/fopht.2023.1229670. eCollection 2023.
5
Cellular structural and functional imaging of donor and pathological corneas with label-free dual-mode full-field optical coherence tomography.
Biomed Opt Express. 2024 May 21;15(6):3869-3888. doi: 10.1364/BOE.525116. eCollection 2024 Jun 1.
6
Optical tomography in a single camera frame using fringe-encoded deep-learning full-field OCT.
Biomed Opt Express. 2023 Dec 14;15(1):222-236. doi: 10.1364/BOE.506664. eCollection 2024 Jan 1.
7
Comparative analysis of full-field OCT and optical transmission tomography.
Biomed Opt Express. 2023 Aug 24;14(9):4845-4861. doi: 10.1364/BOE.494585. eCollection 2023 Sep 1.
8
Non-invasive imaging of human corneal microstructures with optical coherence microscopy.
Biomed Opt Express. 2023 Aug 25;14(9):4888-4900. doi: 10.1364/BOE.495242. eCollection 2023 Sep 1.
9
Interface self-referenced dynamic full-field optical coherence tomography.
Biomed Opt Express. 2023 Jun 21;14(7):3491-3505. doi: 10.1364/BOE.488663. eCollection 2023 Jul 1.
10
Fractal-based aberration-corrected full-field OCT.
Biomed Opt Express. 2023 Jun 27;14(7):3775-3797. doi: 10.1364/BOE.485090. eCollection 2023 Jul 1.

本文引用的文献

2
Conical scan pattern for enhanced visualization of the human cornea using polarization-sensitive OCT.
Biomed Opt Express. 2017 May 8;8(6):2906-2923. doi: 10.1364/BOE.8.002906. eCollection 2017 Jun 1.
3
Ultrahigh-resolution OCT imaging of the human cornea.
Biomed Opt Express. 2017 Jan 30;8(2):1221-1239. doi: 10.1364/BOE.8.001221. eCollection 2017 Feb 1.
4
Sub-micrometer axial resolution OCT for imaging of the cellular structure of healthy and keratoconic human corneas.
Biomed Opt Express. 2017 Jan 12;8(2):800-812. doi: 10.1364/BOE.8.000800. eCollection 2017 Feb 1.
5
New parameters in assessment of human donor corneal stroma.
Acta Ophthalmol. 2017 Jun;95(4):e297-e306. doi: 10.1111/aos.13351. Epub 2017 Jan 30.
6
Adaptive optics full-field optical coherence tomography.
J Biomed Opt. 2016 Dec 1;21(12):121505. doi: 10.1117/1.JBO.21.12.121505.
8
Fingerprint imaging from the inside of a finger with full-field optical coherence tomography.
Biomed Opt Express. 2015 Oct 20;6(11):4465-71. doi: 10.1364/BOE.6.004465. eCollection 2015 Nov 1.
9
The ImageJ ecosystem: An open platform for biomedical image analysis.
Mol Reprod Dev. 2015 Jul-Aug;82(7-8):518-29. doi: 10.1002/mrd.22489. Epub 2015 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验