Suppr超能文献

使用微流控装置对秀丽隐杆线虫进行机械刺激和高分辨率成像。

Using a Microfluidics Device for Mechanical Stimulation and High Resolution Imaging of C. elegans.

作者信息

Fehlauer Holger, Nekimken Adam L, Kim Anna A, Pruitt Beth L, Goodman Miriam B, Krieg Michael

机构信息

Department of Molecular and Cellular Physiology, Stanford University.

Department of Molecular and Cellular Physiology, Stanford University; Department of Mechanical Engineering, Stanford University.

出版信息

J Vis Exp. 2018 Feb 19(132):56530. doi: 10.3791/56530.

Abstract

One central goal of mechanobiology is to understand the reciprocal effect of mechanical stress on proteins and cells. Despite its importance, the influence of mechanical stress on cellular function is still poorly understood. In part, this knowledge gap exists because few tools enable simultaneous deformation of tissue and cells, imaging of cellular activity in live animals, and efficient restriction of motility in otherwise highly mobile model organisms, such as the nematode Caenorhabditis elegans. The small size of C. elegans makes them an excellent match to microfluidics-based research devices, and solutions for immobilization have been presented using microfluidic devices. Although these devices allow for high-resolution imaging, the animal is fully encased in polydimethylsiloxane (PDMS) and glass, limiting physical access for delivery of mechanical force or electrophysiological recordings. Recently, we created a device that integrates pneumatic actuators with a trapping design that is compatible with high-resolution fluorescence microscopy. The actuation channel is separated from the worm-trapping channel by a thin PDMS diaphragm. This diaphragm is deflected into the side of a worm by applying pressure from an external source. The device can target individual mechanosensitive neurons. The activation of these neurons is imaged at high-resolution with genetically-encoded calcium indicators. This article presents the general method using C. elegans strains expressing calcium-sensitive activity indicator (GCaMP6s) in their touch receptor neurons (TRNs). The method, however, is not limited to TRNs nor to calcium sensors as a probe, but can be expanded to other mechanically-sensitive cells or sensors.

摘要

力学生物学的一个核心目标是了解机械应力对蛋白质和细胞的相互作用。尽管其很重要,但机械应力对细胞功能的影响仍知之甚少。部分原因在于,很少有工具能够同时使组织和细胞变形、对活体动物的细胞活动进行成像,以及在如线虫秀丽隐杆线虫这种原本高度可移动的模式生物中有效限制其运动性。秀丽隐杆线虫的小尺寸使其与基于微流体的研究设备非常匹配,并且已经提出了使用微流体设备进行固定的解决方案。虽然这些设备允许进行高分辨率成像,但动物被完全包裹在聚二甲基硅氧烷(PDMS)和玻璃中,限制了施加机械力或进行电生理记录的物理通路。最近,我们创建了一种将气动致动器与捕获设计相结合的设备,该设计与高分辨率荧光显微镜兼容。致动通道通过薄的PDMS隔膜与蠕虫捕获通道隔开。通过从外部源施加压力,该隔膜会偏向蠕虫一侧。该设备可以靶向单个机械敏感神经元。这些神经元的激活通过基因编码的钙指示剂进行高分辨率成像。本文介绍了在其触觉感受神经元(TRN)中表达钙敏感活性指示剂(GCaMP6s)的秀丽隐杆线虫菌株的一般方法。然而,该方法不仅限于TRN,也不仅限于将钙传感器作为探针,而是可以扩展到其他机械敏感细胞或传感器。

相似文献

2
Pneumatic stimulation of C. elegans mechanoreceptor neurons in a microfluidic trap.
Lab Chip. 2017 Mar 14;17(6):1116-1127. doi: 10.1039/c6lc01165a.
4
Detecting and Trapping of a Single C. elegans Worm in a Microfluidic Chip for Automated Microplate Dispensing.
SLAS Technol. 2017 Aug;22(4):431-436. doi: 10.1177/2211068216669688. Epub 2016 Sep 26.
5
Continuous-flow C. elegans fluorescence expression analysis with real-time image processing through microfluidics.
Biosens Bioelectron. 2016 Mar 15;77:428-34. doi: 10.1016/j.bios.2015.09.045. Epub 2015 Sep 28.
8
Microfluidic Devices in Advanced Caenorhabditis elegans Research.
Molecules. 2016 Aug 2;21(8):1006. doi: 10.3390/molecules21081006.

引用本文的文献

2
Automated dual olfactory device for studying head/tail chemosensation in .
APL Bioeng. 2024 Apr 18;8(2):026104. doi: 10.1063/5.0187441. eCollection 2024 Jun.
3
Sexually dimorphic architecture and function of a mechanosensory circuit in C. elegans.
Nat Commun. 2022 Nov 11;13(1):6825. doi: 10.1038/s41467-022-34661-3.
4
An asymmetric mechanical code ciphers curvature-dependent proprioceptor activity.
Sci Adv. 2021 Sep 17;7(38):eabg4617. doi: 10.1126/sciadv.abg4617.
5
Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology.
Micromachines (Basel). 2021 Jan 24;12(2):124. doi: 10.3390/mi12020124.
6
Touch-induced mechanical strain in somatosensory neurons is independent of extracellular matrix mutations in .
Mol Biol Cell. 2020 Jul 21;31(16):1735-1743. doi: 10.1091/mbc.E20-01-0049. Epub 2020 Jun 24.
7
Progressive recruitment of distal MEC-4 channels determines touch response strength in .
J Gen Physiol. 2019 Oct 7;151(10):1213-1230. doi: 10.1085/jgp.201912374. Epub 2019 Sep 18.
8
Microfluidics for mechanobiology of model organisms.
Methods Cell Biol. 2018;146:217-259. doi: 10.1016/bs.mcb.2018.05.010. Epub 2018 Jul 14.
10
Loss of CaMKI Function Disrupts Salt Aversive Learning in .
J Neurosci. 2018 Jul 4;38(27):6114-6129. doi: 10.1523/JNEUROSCI.1611-17.2018. Epub 2018 Jun 6.

本文引用的文献

1
Automated and controlled mechanical stimulation and functional imaging in vivo in C. elegans.
Lab Chip. 2017 Jul 25;17(15):2609-2618. doi: 10.1039/c7lc00465f.
2
Forces applied during classical touch assays for Caenorhabditis elegans.
PLoS One. 2017 May 19;12(5):e0178080. doi: 10.1371/journal.pone.0178080. eCollection 2017.
3
Pneumatic stimulation of C. elegans mechanoreceptor neurons in a microfluidic trap.
Lab Chip. 2017 Mar 14;17(6):1116-1127. doi: 10.1039/c6lc01165a.
5
Mechanical Stimulation of Piezo1 Receptors Depends on Extracellular Matrix Proteins and Directionality of Force.
Nano Lett. 2017 Mar 8;17(3):2064-2072. doi: 10.1021/acs.nanolett.7b00177. Epub 2017 Feb 8.
7
The tubulin repertoire of C. elegans sensory neurons and its context-dependent role in process outgrowth.
Mol Biol Cell. 2016 Sep 21;27(23):3717-28. doi: 10.1091/mbc.E16-06-0473.
8
Biomedical microfluidic devices by using low-cost fabrication techniques: A review.
J Biomech. 2016 Jul 26;49(11):2280-2292. doi: 10.1016/j.jbiomech.2015.11.031. Epub 2015 Nov 27.
9
Tissue mechanics govern the rapidly adapting and symmetrical response to touch.
Proc Natl Acad Sci U S A. 2015 Dec 15;112(50):E6955-63. doi: 10.1073/pnas.1514138112. Epub 2015 Dec 1.
10
Feeling force: physical and physiological principles enabling sensory mechanotransduction.
Annu Rev Cell Dev Biol. 2015;31:347-71. doi: 10.1146/annurev-cellbio-100913-013426.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验