Saliba John, Daou Arij, Damiati Samar, Saliba Jessica, El-Sabban Marwan, Mhanna Rami
Biomedical Engineering Program, American University of Beirut (AUB), Beirut 1107 2020, Lebanon.
Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
Genes (Basel). 2018 Jun 6;9(6):285. doi: 10.3390/genes9060285.
Understanding the mechanisms that govern nervous tissues function remains a challenge. In vitro two-dimensional (2D) cell culture systems provide a simplistic platform to evaluate systematic investigations but often result in unreliable responses that cannot be translated to pathophysiological settings. Recently, microplatforms have emerged to provide a better approximation of the in vivo scenario with better control over the microenvironment, stimuli and structure. Advances in biomaterials enable the construction of three-dimensional (3D) scaffolds, which combined with microfabrication, allow enhanced biomimicry through precise control of the architecture, cell positioning, fluid flows and electrochemical stimuli. This manuscript reviews, compares and contrasts advances in nervous tissues-on-a-chip models and their applications in neural physiology and disease. Microplatforms used for neuro-glia interactions, neuromuscular junctions (NMJs), blood-brain barrier (BBB) and studies on brain cancer, metastasis and neurodegenerative diseases are addressed. Finally, we highlight challenges that can be addressed with interdisciplinary efforts to achieve a higher degree of biomimicry. Nervous tissue microplatforms provide a powerful tool that is destined to provide a better understanding of neural health and disease.
了解支配神经组织功能的机制仍然是一项挑战。体外二维(2D)细胞培养系统提供了一个简单的平台来评估系统性研究,但往往会导致不可靠的反应,无法转化为病理生理环境。最近,微平台应运而生,能够更好地模拟体内环境,同时对微环境、刺激和结构进行更好的控制。生物材料的进步使得三维(3D)支架的构建成为可能,结合微加工技术,通过对结构、细胞定位、流体流动和电化学刺激的精确控制,可以增强仿生效果。本文综述、比较并对比了芯片上神经组织模型的进展及其在神经生理学和疾病中的应用。文中还讨论了用于神经-胶质细胞相互作用、神经肌肉接头(NMJ)、血脑屏障(BBB)以及脑癌、转移和神经退行性疾病研究的微平台。最后,我们强调了通过跨学科努力可以解决的挑战,以实现更高程度的仿生。神经组织微平台提供了一个强大的工具,注定能让我们更好地理解神经健康和疾病。