Kim Anna A, Nekimken Adam L, Fechner Sylvia, O'Brien Lucy E, Pruitt Beth L
University of California, Santa Barbara, CA, United States; Uppsala University, Uppsala, Sweden; Stanford University, Stanford, CA, United States.
Stanford University, Stanford, CA, United States.
Methods Cell Biol. 2018;146:217-259. doi: 10.1016/bs.mcb.2018.05.010. Epub 2018 Jul 14.
Mechanical stimuli play a critical role in organ development, tissue homeostasis, and disease. Understanding how mechanical signals are processed in multicellular model systems is critical for connecting cellular processes to tissue- and organism-level responses. However, progress in the field that studies these phenomena, mechanobiology, has been limited by lack of appropriate experimental techniques for applying repeatable mechanical stimuli to intact organs and model organisms. Microfluidic platforms, a subgroup of microsystems that use liquid flow for manipulation of objects, are a promising tool for studying mechanobiology of small model organisms due to their size scale and ease of customization. In this work, we describe design considerations involved in developing a microfluidic device for studying mechanobiology. Then, focusing on worms, fruit flies, and zebrafish, we review current microfluidic platforms for mechanobiology of multicellular model organisms and their tissues and highlight research opportunities in this developing field.
机械刺激在器官发育、组织稳态和疾病中起着关键作用。了解多细胞模型系统中机械信号是如何被处理的,对于将细胞过程与组织和机体水平的反应联系起来至关重要。然而,研究这些现象的力学生物学领域的进展一直受到限制,因为缺乏将可重复的机械刺激应用于完整器官和模式生物的适当实验技术。微流控平台是利用液体流动来操纵物体的微系统的一个子类别,由于其尺寸规模和易于定制的特点,是研究小型模式生物力学生物学的一个有前途的工具。在这项工作中,我们描述了开发用于研究力学生物学的微流控装置所涉及的设计考虑因素。然后,聚焦于线虫、果蝇和斑马鱼,我们综述了用于多细胞模式生物及其组织力学生物学研究的当前微流控平台,并突出了这个新兴领域的研究机会。