调查金属-有机骨架在各向异性病毒颗粒上的控制生长。
Investigation of Controlled Growth of Metal-Organic Frameworks on Anisotropic Virus Particles.
出版信息
ACS Appl Mater Interfaces. 2018 May 30;10(21):18161-18169. doi: 10.1021/acsami.8b01369. Epub 2018 Apr 1.
Biomimetic mineralization with metal-organic frameworks (MOF), typically zeolitic imidazolate framework-8 (ZIF-8), is an emerging strategy to protect sensitive biological substances against denaturing environmental stressors such as heat and proteolytic agents. Additionally, this same biomimetic mineralization process has the potential of being used to create distinct core-shell architectures using genetically or chemically modified viral nanoparticles. Despite the proliferation of examples for ZIF-8 growth on biological or proteinaceous substrates, systematic studies of these processes are few and far between. Herein, we employed the tobacco mosaic virus (TMV) as a model biological template to investigate the biomimetic mineralization of ZIF-8, which has been proven to be a robust MOF for encasing and protecting inlaid biological substances. Our study shows a systematic dependence upon ZIF-8 crystallization parameters, e.g., ligand to metal molar ratio and metal concentration, which can yield several distinct morphologies of TMV@ZIF-8 composites and phases of ZIF-8. Further investigation using charged synthetic conjugates, time dependent growth analysis, and calorimetric analysis has shown that the TMV-Zn interaction plays a pivotal role in the final morphology of the TMV@ZIF-8, which can take the form of either core-shell bionanoparticles or large crystals of ZIF-8 with entrapped TMV located exclusively on the outer facets. The design rules outlined here, it is hoped, will provide guidance in biomimetic mineralization of MOFs on proteinaceous materials using ZIF-8.
基于金属有机骨架(MOF)的仿生矿化,特别是沸石咪唑骨架-8(ZIF-8),是一种新兴策略,可以保护敏感的生物物质免受热和蛋白水解剂等变性环境胁迫的影响。此外,同样的仿生矿化过程也有可能用于使用基因或化学修饰的病毒纳米颗粒来创建独特的核壳结构。尽管 ZIF-8 在生物或蛋白质基底上生长的例子很多,但对这些过程的系统研究却很少。在这里,我们以烟草花叶病毒(TMV)作为模型生物模板,研究了 ZIF-8 的仿生矿化,事实证明 ZIF-8 是一种封装和保护嵌入生物物质的强大 MOF。我们的研究表明,ZIF-8 的结晶参数(例如配体与金属的摩尔比和金属浓度)存在系统依赖性,这些参数可以生成几种不同形态的 TMV@ZIF-8 复合材料和 ZIF-8 相。使用带电合成配体、时间依赖性生长分析和量热分析的进一步研究表明,TMV-Zn 相互作用在 TMV@ZIF-8 的最终形态中起着关键作用,其可以是核壳型 bionanoparticles 或 ZIF-8 大晶体,其中 TMV 仅位于外表面。希望这里概述的设计规则将为使用 ZIF-8 在蛋白质材料上进行 MOF 的仿生矿化提供指导。