文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

将 转化为具有杂异手性膜的古细菌。

Converting into an archaebacterium with a hybrid heterochiral membrane.

机构信息

Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands.

The Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands.

出版信息

Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3704-3709. doi: 10.1073/pnas.1721604115. Epub 2018 Mar 19.


DOI:10.1073/pnas.1721604115
PMID:29555770
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5889666/
Abstract

One of the main differences between bacteria and archaea concerns their membrane composition. Whereas bacterial membranes are made up of glycerol-3-phosphate ester lipids, archaeal membranes are composed of glycerol-1-phosphate ether lipids. Here, we report the construction of a stable hybrid heterochiral membrane through lipid engineering of the bacterium By boosting isoprenoid biosynthesis and heterologous expression of archaeal ether lipid biosynthesis genes, we obtained a viable strain of which the membranes contain archaeal lipids with the expected stereochemistry. It has been found that the archaeal lipid biosynthesis enzymes are relatively promiscuous with respect to their glycerol phosphate backbone and that has the unexpected potential to generate glycerol-1-phosphate. The unprecedented level of 20-30% archaeal lipids in a bacterial cell has allowed for analyzing the effect on the mixed-membrane cell's phenotype. Interestingly, growth rates are unchanged, whereas the robustness of cells with a hybrid heterochiral membrane appeared slightly increased. The implications of these findings for evolutionary scenarios are discussed.

摘要

细菌和古菌之间的主要区别之一涉及它们的膜组成。细菌的膜由甘油-3-磷酸酯脂质组成,而古菌的膜由甘油-1-磷酸醚脂质组成。在这里,我们通过细菌的脂质工程报告了一种稳定的杂种异手性膜的构建,通过增加异戊二烯生物合成和异源表达古菌醚脂质生物合成基因,我们获得了一种可行的菌株,其膜中含有具有预期立体化学的古菌脂质。已经发现,古菌脂质生物合成酶对其甘油磷酸骨架相对具有混杂性,并且出乎意料的是,具有产生甘油-1-磷酸的潜力。在细菌细胞中,古菌脂质的含量前所未有地达到 20-30%,这使得能够分析对混合膜细胞表型的影响。有趣的是,生长速率没有变化,而具有杂种异手性膜的细胞的稳健性似乎略有增加。讨论了这些发现对进化情景的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4137/5889666/71ae816b4772/pnas.1721604115fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4137/5889666/dc3b86b431f4/pnas.1721604115fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4137/5889666/a0604c56ec0e/pnas.1721604115fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4137/5889666/54fc0bf4c3d0/pnas.1721604115fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4137/5889666/bfc72a7f94f0/pnas.1721604115fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4137/5889666/71ae816b4772/pnas.1721604115fig05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4137/5889666/dc3b86b431f4/pnas.1721604115fig01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4137/5889666/a0604c56ec0e/pnas.1721604115fig02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4137/5889666/54fc0bf4c3d0/pnas.1721604115fig03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4137/5889666/bfc72a7f94f0/pnas.1721604115fig04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4137/5889666/71ae816b4772/pnas.1721604115fig05.jpg

相似文献

[1]
Converting into an archaebacterium with a hybrid heterochiral membrane.

Proc Natl Acad Sci U S A. 2018-3-19

[2]
Formation of the ether lipids archaetidylglycerol and archaetidylethanolamine in Escherichia coli.

Biochem J. 2015-9-15

[3]
Phylogenomic analysis of lipid biosynthetic genes of Archaea shed light on the 'lipid divide'.

Environ Microbiol. 2016-7-7

[4]
Engineering E. coli to Have a Hybrid Archaeal/Bacterial Membrane.

Trends Microbiol. 2018-5-19

[5]
Optimizing Archaeal Lipid Biosynthesis in .

ACS Synth Biol. 2024-8-16

[6]
Bridging the membrane lipid divide: bacteria of the FCB group superphylum have the potential to synthesize archaeal ether lipids.

ISME J. 2021-1

[7]
The catalytic and structural basis of archaeal glycerophospholipid biosynthesis.

Extremophiles. 2022-8-17

[8]
Archaeal phospholipids: Structural properties and biosynthesis.

Biochim Biophys Acta Mol Cell Biol Lipids. 2016-12-20

[9]
Isoprenoid biosynthesis in Archaea--biochemical and evolutionary implications.

Res Microbiol. 2010-10-27

[10]
Origins and evolution of isoprenoid lipid biosynthesis in archaea.

Mol Microbiol. 2004-4

引用本文的文献

[1]
Dominant contribution of Asgard archaea to eukaryogenesis.

bioRxiv. 2025-7-14

[2]
Permeability selection of biologically relevant membranes matches the stereochemistry of life on Earth.

PLoS Biol. 2025-5-20

[3]
Engineering archaeal membrane-spanning lipid GDGT biosynthesis in bacteria: Implications for early life membrane transformations.

mLife. 2025-3-13

[4]
Archaeal Lipids: Extraction, Separation, and Identification via Natural Product Chemistry Perspective.

Int J Mol Sci. 2025-3-29

[5]
Synthetic Lipid Biology.

Chem Rev. 2025-2-26

[6]
A tuneable minimal cell membrane reveals that two lipid species suffice for life.

Nat Commun. 2024-11-8

[7]
A tuneable minimal cell membrane reveals that two lipid species suffice for life.

bioRxiv. 2024-10-18

[8]
The Last Universal Common Ancestor of Ribosome-Encoding Organisms: Portrait of LUCA.

J Mol Evol. 2024-10

[9]
Optimizing Archaeal Lipid Biosynthesis in .

ACS Synth Biol. 2024-8-16

[10]
The astrochemical evolutionary traits of phospholipid membrane homochirality.

Nat Rev Chem. 2024-9

本文引用的文献

[1]
Characterization of Fatty Acids in Crenarchaeota by GC-MS and NMR.

Archaea. 2015-12-31

[2]
High-level production of membrane proteins in E. coli BL21(DE3) by omitting the inducer IPTG.

Microb Cell Fact. 2015-9-16

[3]
Formation of the ether lipids archaetidylglycerol and archaetidylethanolamine in Escherichia coli.

Biochem J. 2015-9-15

[4]
Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in Archaea.

Chem Biol. 2014-10-23

[5]
Phylogenomic reconstruction of archaeal fatty acid metabolism.

Environ Microbiol. 2014-4

[6]
Dividing cells regulate their lipid composition and localization.

Cell. 2014-1-23

[7]
Geranylgeranyl reductase and ferredoxin from Methanosarcina acetivorans are required for the synthesis of fully reduced archaeal membrane lipid in Escherichia coli cells.

J Bacteriol. 2013-11-8

[8]
Combining genotype improvement and statistical media optimization for isoprenoid production in E. coli.

PLoS One. 2013-10-4

[9]
Excess membrane synthesis drives a primitive mode of cell proliferation.

Cell. 2013-2-28

[10]
Thermal adaptation of the archaeal and bacterial lipid membranes.

Archaea. 2012-8-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索