Justice Isaac, Kiesel Petra, Safronova Nataliya, von Appen Alexander, Saenz James P
Technische Universität Dresden, B CUBE Center for Molecular Bioengineering, 01307 Dresden, Germany.
Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 107, 01307 Dresden.
bioRxiv. 2024 Oct 18:2023.10.24.563757. doi: 10.1101/2023.10.24.563757.
All cells are encapsulated by a lipid membrane which facilitates the interaction between life and its environment. How life exploits the diverse mixtures of lipids that dictate membrane property and function has been experimentally challenging to address. We introduce an approach to tune and minimize lipidomes in and the Minimal Cell (JCVI-Syn3A) revealing that a 2-component lipidome can support life. Systematically reintroducing phospholipid features demonstrated that acyl chain diversity is more critical for growth than head group diversity. By tuning lipid chirality, we explored the lipid divide between Archaea and the rest of life, showing that ancestral lipidomes could have been heterochiral. Our approach offers a tunable minimal membrane system to explore the fundamental lipidomic requirements for life, thereby extending the concept of minimal life from the genome to the lipidome.
所有细胞都被脂质膜包裹,这促进了生命与其环境之间的相互作用。生命如何利用决定膜特性和功能的多种脂质混合物,在实验上一直具有挑战性。我们引入了一种方法来调节并最小化最小细胞(JCVI-Syn3A)中的脂质组,结果表明双组分脂质组就能维持生命。系统地重新引入磷脂特征表明,酰基链多样性对生长比头部基团多样性更为关键。通过调节脂质手性,我们探索了古菌与其他生命形式之间的脂质差异,结果表明原始脂质组可能是异手性的。我们的方法提供了一个可调谐的最小膜系统,以探索生命所需的基本脂质组学要求,从而将最小生命的概念从基因组扩展到脂质组。