Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom.
Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar- 190025, Jammu and Kashmir, India.
Plant Physiol. 2018 May;177(1):24-37. doi: 10.1104/pp.18.00250. Epub 2018 Mar 19.
With nearly 140 α-glycosidases in 14 different families, plants are well equipped with enzymes that can break the α-glucosidic bonds in a large diversity of molecules. Here, we introduce activity-based protein profiling (ABPP) of α-glycosidases in plants using α-configured cyclophellitol aziridine probes carrying various fluorophores or biotin. In Arabidopsis (), these probes label members of the GH31 family of glycosyl hydrolases, including endoplasmic reticulum-resident α-glucosidase-II Radial Swelling3/Priority for Sweet Life5 (RSW3/PSL5) and Golgi-resident α-mannosidase-II Hybrid Glycosylation1 (HGL1), both of which trim -glycans on glycoproteins. We detected the active state of extracellular α-glycosidases such as α-xylosidase XYL1, which acts on xyloglucans in the cell wall to promote cell expansion, and α-glucosidase AGLU1, which acts in starch hydrolysis and can suppress fungal invasion. Labeling of α-glycosidases generates pH-dependent signals that can be suppressed by α-glycosidase inhibitors in a broad range of plant species. To demonstrate its use on a nonmodel plant species, we applied ABPP on saffron crocus (), a cash crop for the production of saffron spice. Using a combination of biotinylated glycosidase probes, we identified and quantified 67 active glycosidases in saffron crocus stigma, of which 10 are differentially active. We also uncovered massive changes in hydrolase activities in the corms upon infection with using multiplex fluorescence labeling in combination with probes for serine hydrolases and cysteine proteases. These experiments demonstrate the ease with which active α-glycosidases and other hydrolases can be analyzed through ABPP in model and nonmodel plants.
植物拥有近 140 种属于 14 个不同家族的α-糖苷酶,这些酶能够切割各种分子中的α-糖苷键。在这里,我们使用带有不同荧光团或生物素的α-构型环磷醇氮丙啶探针,对植物中的α-糖苷酶进行基于活性的蛋白质谱分析(ABPP)。在拟南芥()中,这些探针标记糖基水解酶 GH31 家族的成员,包括驻留在内质网的α-葡萄糖苷酶-II Radial Swelling3/Priority for Sweet Life5(RSW3/PSL5)和驻留在高尔基体的α-甘露糖苷酶-II Hybrid Glycosylation1(HGL1),它们都能修剪糖蛋白上的-聚糖。我们检测到了细胞外α-糖苷酶的活性状态,如作用于细胞壁中木葡聚糖的细胞壁α-木糖苷酶 XYL1,以促进细胞扩张,以及作用于淀粉水解的α-葡萄糖苷酶 AGLU1,它可以抑制真菌入侵。α-糖苷酶的标记会产生依赖 pH 的信号,该信号可以被广泛的植物物种中的α-糖苷酶抑制剂所抑制。为了证明其在非模式植物物种上的应用,我们在藏红花()上进行了 ABPP 实验,藏红花是一种用于生产藏红花香料的经济作物。我们使用生物素化糖苷酶探针的组合,在藏红花柱头中鉴定和量化了 67 种活性糖苷酶,其中 10 种具有差异活性。我们还发现,在感染后,球茎中的水解酶活性发生了巨大变化,使用多重荧光标记与丝氨酸水解酶和半胱氨酸蛋白酶探针相结合。这些实验证明了在模式和非模式植物中,通过 ABPP 轻松分析活性α-糖苷酶和其他水解酶的可能性。