Chandrasekar Balakumaran, Colby Thomas, Emran Khan Emon Asif, Jiang Jianbing, Hong Tram Ngoc, Villamor Joji Grace, Harzen Anne, Overkleeft Herman S, van der Hoorn Renier A L
From the ‡Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom; §Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany;
‖Gorlaeus Laboratories, Leiden Institute of Chemistry and Netherlands Center for Proteomics, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
Mol Cell Proteomics. 2014 Oct;13(10):2787-800. doi: 10.1074/mcp.O114.041616. Epub 2014 Jul 23.
Plants produce hundreds of glycosidases. Despite their importance in cell wall (re)modeling, protein and lipid modification, and metabolite conversion, very little is known of this large class of glycolytic enzymes, partly because of their post-translational regulation and their elusive substrates. Here, we applied activity-based glycosidase profiling using cell-permeable small molecular probes that react covalently with the active site nucleophile of retaining glycosidases in an activity-dependent manner. Using mass spectrometry we detected the active state of dozens of myrosinases, glucosidases, xylosidases, and galactosidases representing seven different retaining glycosidase families. The method is simple and applicable for different organs and different plant species, in living cells and in subproteomes. We display the active state of previously uncharacterized glycosidases, one of which was encoded by a previously declared pseudogene. Interestingly, glycosidase activity profiling also revealed the active state of a diverse range of putative xylosidases, galactosidases, glucanases, and heparanase in the cell wall of Nicotiana benthamiana. Our data illustrate that this powerful approach displays a new and important layer of functional proteomic information on the active state of glycosidases.
植物能产生数百种糖苷酶。尽管它们在细胞壁(重新)塑造、蛋白质和脂质修饰以及代谢物转化中具有重要作用,但对于这类庞大的糖酵解酶却知之甚少,部分原因在于它们的翻译后调控以及难以捉摸的底物。在此,我们应用基于活性的糖苷酶分析方法,使用可穿透细胞的小分子探针,这些探针以活性依赖的方式与保留型糖苷酶的活性位点亲核试剂发生共价反应。通过质谱分析,我们检测到了代表七个不同保留型糖苷酶家族的数十种黑芥子酶、葡萄糖苷酶、木糖苷酶和半乳糖苷酶的活性状态。该方法简单易行,适用于不同器官和不同植物物种,可用于活细胞和亚蛋白质组。我们展示了此前未被表征的糖苷酶的活性状态,其中一种由先前宣布的假基因编码。有趣的是,糖苷酶活性分析还揭示了本氏烟草细胞壁中多种假定的木糖苷酶、半乳糖苷酶、葡聚糖酶和乙酰肝素酶的活性状态。我们的数据表明,这种强大的方法展示了关于糖苷酶活性状态的功能蛋白质组信息的一个新的重要层面。