Martínez-Esteso María José, Morante-Carriel Jaime, Samper-Herrero Antonio, Martínez-Márquez Ascensión, Sellés-Marchart Susana, Nájera Hugo, Bru-Martínez Roque
Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig, Alicante, Spain.
Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain.
Biomolecules. 2024 Nov 30;14(12):1539. doi: 10.3390/biom14121539.
Plants are a valuable source of specialized metabolites that provide a plethora of therapeutic applications. They are natural defenses that plants use to adapt and respond to their changing environment. Decoding their biosynthetic pathways and understanding how specialized plant metabolites (SPMs) respond to biotic or abiotic stress will provide vital knowledge for plant biology research and its application for the future sustainable production of many SPMs of interest. Here, we focus on the proteomic approaches and strategies that help with the study of plant-specialized metabolism, including the: (i) discovery of key enzymes and the clarification of their biosynthetic pathways; (ii) study of the interconnection of both primary (providers of carbon and energy for SPM production) and specialized (secondary) metabolism; (iii) study of plant responses to biotic and abiotic stress; (iv) study of the regulatory mechanisms that direct their biosynthetic pathways. Proteomics, as exemplified in this review by the many studies performed to date, is a powerful tool that forms part of omics-driven research. The proteomes analysis provides an additional unique level of information, which is absent from any other omics studies. Thus, an integrative analysis, considered versus a single omics analysis, moves us more closely toward a closer interpretation of real cellular processes. Finally, this work highlights advanced proteomic technologies with immediate applications in the field.
植物是特殊代谢产物的宝贵来源,这些代谢产物具有大量的治疗应用。它们是植物用来适应和应对不断变化的环境的天然防御手段。解码它们的生物合成途径,并了解植物特殊代谢产物(SPMs)如何应对生物或非生物胁迫,将为植物生物学研究及其在未来可持续生产许多感兴趣的SPMs中的应用提供至关重要的知识。在这里,我们重点关注有助于植物特殊代谢研究的蛋白质组学方法和策略,包括:(i)关键酶的发现及其生物合成途径的阐明;(ii)初级代谢(为SPM生产提供碳和能量)与特殊(次级)代谢之间相互联系的研究;(iii)植物对生物和非生物胁迫反应的研究;(iv)指导其生物合成途径的调控机制的研究。正如本综述中迄今为止进行的许多研究所表明的那样,蛋白质组学是组学驱动研究的一部分,是一种强大的工具。蛋白质组分析提供了其他任何组学研究都没有的额外独特信息层面。因此,与单一组学分析相比,综合分析使我们更接近对真实细胞过程的更深入解释。最后,这项工作突出了在该领域具有直接应用的先进蛋白质组学技术。