Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA.
Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266100, China.
Nat Commun. 2018 Mar 19;9(1):1124. doi: 10.1038/s41467-018-03134-x.
The ocean's role in global climate change largely depends on its heat transport. Therefore, understanding the oceanic meridional heat transport (MHT) variability is a fundamental issue. Prevailing observational and modeling evidence suggests that MHT variability is primarily determined by the large-scale ocean circulation. Here, using new in situ observations in the eastern subpolar North Atlantic Ocean and an eddy-resolving numerical model, we show that energetic mesoscale eddies with horizontal scales of about 10-100 km profoundly modulate MHT variability on time scales from intra-seasonal to interannual. Our results reveal that the velocity changes due to mesoscale processes produce substantial variability for the MHT regionally (within sub-basins) and the subpolar North Atlantic as a whole. The findings have important implications for understanding the mechanisms for poleward heat transport variability in the subpolar North Atlantic Ocean, a key region for heat and carbon sequestration, ice-ocean interaction, and biological productivity.
海洋在全球气候变化中的作用在很大程度上取决于其热量输送。因此,了解海洋经向热输送(MHT)的变化是一个基本问题。现有的观测和模式证据表明,MHT 的变化主要由大尺度海洋环流决定。在这里,我们利用新的在北大西洋东部亚极地海洋的现场观测数据和一个具有涡分辨能力的数值模型,表明水平尺度约为 10-100km 的强能量中尺度涡对 MHT 的变化具有重要影响,其时间尺度从季节内到年际。我们的结果表明,中尺度过程引起的速度变化导致 MHT 在区域(次盆地内)和整个北大西洋亚极地的变化显著。这些发现对于理解北大西洋亚极地热量输送变化的机制具有重要意义,北大西洋亚极地是热量和碳储存、冰-海洋相互作用和生物生产力的关键区域。