Ganachaud A, Wunsch C
MIT, Cambridge, Massachusetts 02139, USA.
Nature. 2000 Nov 23;408(6811):453-7. doi: 10.1038/35044048.
Through its ability to transport large amounts of heat, fresh water and nutrients, the ocean is an essential regulator of climate. The pathways and mechanisms of this transport and its stability are critical issues in understanding the present state of climate and the possibilities of future changes. Recently, global high-quality hydrographic data have been gathered in the World Ocean Circulation Experiment (WOCE), to obtain an accurate picture of the present circulation. Here we combine the new data from high-resolution trans-oceanic sections and current meters with climatological wind fields, biogeochemical balances and improved a priori error estimates in an inverse model, to improve estimates of the global circulation and heat fluxes. Our solution resolves globally vertical mixing across surfaces of equal density, with coefficients in the range (3-12) x 10(-4) m2 s(-1). Net deep-water production rates amount to (15 +/- 12) x 10(6) m3 s(-1) in the North Atlantic Ocean and (21 +/- 6) x 10(6) m3 s(-1) in the Southern Ocean. Our estimates provide a new reference state for future climate studies with rigorous estimates of the uncertainties.
通过其传输大量热量、淡水和营养物质的能力,海洋是气候的重要调节器。这种传输的路径和机制及其稳定性是理解当前气候状态和未来变化可能性的关键问题。最近,全球高质量水文数据已在世界海洋环流实验(WOCE)中收集,以获取当前环流的准确情况。在此,我们将来自高分辨率跨洋断面和海流计的新数据与气候风场、生物地球化学平衡以及改进的先验误差估计相结合,用于一个反演模型,以改进对全球环流和热通量的估计。我们的解决方案解析了全球等密度面上的垂直混合,混合系数范围为(3 - 12)×10(-4)平方米每秒。北大西洋的净深水生产率为(15±12)×10(6)立方米每秒,南大洋为(21±6)×10(6)立方米每秒。我们的估计为未来气候研究提供了一个新的参考状态,并对不确定性进行了严格估计。