Quantitative Clinical Pharmacology, IMED Biotech Unit, AstraZeneca Pharmaceuticals, Gatehouse Park, 35 Gatehouse Drive, Waltham, MA, 02451, USA.
J Pharmacokinet Pharmacodyn. 2018 Jun;45(3):469-482. doi: 10.1007/s10928-018-9582-0. Epub 2018 Mar 19.
Modeling the relationship between drug concentrations and heart rate corrected QT interval (QTc) change from baseline (C-∆QTc), based on Phase I single ascending dose (SAD) or multiple ascending dose (MAD) studies, has been proposed as an alternative to thorough QT studies (TQT), in assessing drug-induced QT prolongation risk. The present analysis used clinical SAD, MAD and TQT study data of an experimental compound, AZD5672, to evaluate the performance of: (i) three computational platforms (linear mixed-effects modeling implemented via PROC MIXED in SAS, as well as in R using LME4 package and linear quantile mixed models (LQMM) implemented via LQMM package; (ii) different model structures with and without treatment- or time-specific intercepts; and (iii) three methods for calculating the confidence interval (CI) of QTc prolongation (analytical and bootstrap methods with fixed or varied geometric mean concentrations). We show that treatment- and time-specific intercepts may need to be included into C-∆QTc modeling through PROC MIXED or LME4, regardless of their statistical significance. With the intersection union test (IUT) in the TQT study as a reference for comparison, inclusion of these intercepts increased the feasibility for C-∆QTc modelling of SAD or MAD to reach the same conclusion as the IUT analysis based on TQT study. Compared to PROC MIXED or LME4, the LQMM method is less dependent on inclusion of treatment- or time-specific intercepts, and the bootstrap CI calculation methods provided higher likelihood for C-∆QTc modeling of SAD and MAD studies to reach the same conclusion as the IUT based on the TQT study.
基于 I 期单剂量递增(SAD)或多剂量递增(MAD)研究,建立药物浓度与基线时校正的 QT 间期(QTc)变化(C-∆QTc)之间的关系模型,以替代全面的 QT 研究(TQT),从而评估药物引起的 QT 延长风险。本分析使用实验化合物 AZD5672 的临床 SAD、MAD 和 TQT 研究数据,评估了以下三种方法的性能:(i)三种计算平台(SAS 中通过 PROC MIXED 实现的线性混合效应模型,以及在 R 中使用 LME4 包和线性分位数混合模型(LQMM)实现的 LQMM 包);(ii)具有和不具有治疗或时间特异性截距的不同模型结构;(iii)计算 QTc 延长置信区间(CI)的三种方法(固定或变化几何均数浓度的分析和自举方法)。结果表明,无论其统计学意义如何,通过 PROC MIXED 或 LME4 都可能需要将治疗和时间特异性截距纳入 C-∆QTc 模型中。与 TQT 研究中的交点并集测试(IUT)作为比较的参考,纳入这些截距可提高 SAD 或 MAD 研究中 C-∆QTc 建模的可行性,使其与基于 TQT 研究的 IUT 分析得出相同的结论。与 PROC MIXED 或 LME4 相比,LQMM 方法对纳入治疗或时间特异性截距的依赖性较小,自举 CI 计算方法为 SAD 和 MAD 研究中 C-∆QTc 建模提供了更高的可能性,使其与基于 TQT 研究的 IUT 得出相同的结论。