Suppr超能文献

浓度-QT 模型显示,在预期治疗浓度下,卡匹维仑不会导致临床上明显的 QT 间期延长。

Concentration-QT modelling shows no evidence of clinically significant QT interval prolongation with capivasertib at expected therapeutic concentrations.

机构信息

M&S Decisions LLC, Moscow, Russia.

Clinical Pharmacology and Quantitative Pharmacology, BioPharmaceuticals R&D, AstraZeneca R&D, Gothenburg, Sweden.

出版信息

Br J Clin Pharmacol. 2022 Feb;88(2):858-864. doi: 10.1111/bcp.15006. Epub 2021 Sep 28.

Abstract

Pharmacokinetics-matched digital electrocardiogram data (n = 503 measurements from 180 patients) collected in a first-in-human, multi-part, dose-escalation (from 80 to 800 mg) and dose expansion (at 480 mg) phase 1 study in patients with advanced solid malignancies, were used to assess potential risk of QT prolongation associated with the AKT inhibitor capivasertib. The relationship between plasma drug concentrations and baseline-adjusted Fridericia-corrected QT (ΔQTcF) values was estimated using a prespecified linear mixed-effects model. The model provided an unbiased reproduction of the experimental data set, estimating a small but positive correlation between capivasertib concentration and ΔQTcF. At the expected therapeutic dose (400 mg twice daily) the predicted mean ΔQTcF at the steady state maximum concentration was 3.97 ms with an upper limit of the 90% CI of 5.07 ms; below the 10 ms limit proposed by ICH E14 guidance. This analysis suggests that capivasertib is not expected to present a clinically significant risk for QT prolongation that is associated with pro-arrhythmic effects.

摘要

在一项首个人体、多部分、剂量递增(从 80 至 800mg)和剂量扩展(480mg)的 1 期研究中,收集了匹配药代动力学的数字心电图数据(来自 180 名晚期实体瘤患者的 503 次测量),以评估 AKT 抑制剂卡比沙替与 QT 延长相关的潜在风险。使用预先指定的线性混合效应模型来估计血浆药物浓度与基线校正的 Fridericia 校正 QT(ΔQTcF)值之间的关系。该模型对实验数据集进行了无偏重现,估计卡比沙替浓度与 ΔQTcF 之间存在微小但正相关。在预期的治疗剂量(400mg 每日两次)下,稳态最大浓度时的预测平均 ΔQTcF 为 3.97ms,90%置信区间上限为 5.07ms;低于 ICH E14 指南建议的 10ms 限值。该分析表明,卡比沙替不太可能引起与致心律失常作用相关的临床上显著的 QT 延长风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f618/9292875/e46548ccdee4/BCP-88-858-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验