The Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA, 94720 USA.
Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Nanoscale. 2018 Mar 29;10(13):5859-5863. doi: 10.1039/C8NR00655E.
Supported catalysts are widely used in industry and can be optimized by tuning the composition, chemical structure, and interface of the nanoparticle catalyst and oxide support. Here we firstly combine a bottom up colloidal synthesis method with a top down atomic layer deposition (ALD) process to achieve a raspberry-like Pt-decorated Fe3O4 (Fe3O4-Pt) nanoparticle superlattices. This nanocomposite ensures the precision of the catalyst/support interface, improving the catalytic efficiency of the Fe3O4-Pt nanocomposite system. The morphology of the hybrid nanocomposites resulting from different cycles of ALD was monitored by scanning transmission electron microscopy, giving insight into the nucleation and growth mechanism of the ALD process. X-ray photoelectron spectroscopy studies confirm the anticipated electron transfer from Fe3O4 to Pt through the nanocomposite interface. Photocurrent measurement further suggests that Fe3O4 superlattices with controlled decoration of Pt have substantial promise for energy-efficient photoelectrocatalytic oxygen evolution reaction. This work opens a new avenue for designing supported catalyst architectures via precisely controlled decoration of single component superlattices with noble metals.
负载型催化剂在工业中得到了广泛应用,通过调整纳米颗粒催化剂和氧化物载体的组成、化学结构和界面,可以对其进行优化。在这里,我们首次将自下而上的胶体合成方法与自上而下的原子层沉积(ALD)工艺相结合,实现了覆盆子状 Pt 修饰的 Fe3O4(Fe3O4-Pt)纳米颗粒超晶格。这种纳米复合材料确保了催化剂/载体界面的精度,提高了 Fe3O4-Pt 纳米复合材料体系的催化效率。通过扫描透射电子显微镜监测不同 ALD 循环得到的混合纳米复合材料的形态,深入了解了 ALD 过程的成核和生长机制。X 射线光电子能谱研究证实了预期的通过纳米复合材料界面从 Fe3O4 到 Pt 的电子转移。光电电流测量进一步表明,通过控制 Pt 对 Fe3O4 超晶格的修饰,具有控制的 Pt 修饰的 Fe3O4 超晶格在高效光电催化析氧反应中具有很大的应用前景。这项工作为通过对单一组分超晶格进行精确控制的贵金属修饰来设计负载型催化剂结构开辟了一条新途径。