Department of Chemistry and Materials Research Institute, The Pennsylvania State University , University Park, Pennsylvania 16802, United States.
J Am Chem Soc. 2015 Dec 16;137(49):15493-500. doi: 10.1021/jacs.5b10254. Epub 2015 Dec 7.
Three-component hybrid nanoparticle heterotrimers, which are important multifunctional constructs that underpin diverse applications, are commonly synthesized by growing a third domain off of a two-component heterodimer seed. However, because heterodimer seeds expose two distinct surfaces that often can both support nucleation and growth, selectively targeting one particular surface is critical for exclusively accessing a desired configuration. Understanding and controlling nucleation and growth therefore enables the rational formation of high-order hybrid nanoparticles. Here, we report an in-depth microscopic investigation that probes the chemoselective addition of Ag to Pt-Fe3O4 heterodimer seeds to form Ag-Pt-Fe3O4 heterotrimers. We find that the formation of the Ag-Pt-Fe3O4 heterotrimers initiates with indiscriminate Ag nucleation onto both the Pt and Fe3O4 surfaces of Pt-Fe3O4, followed by surface diffusion and coalescence of Ag onto the Pt surface to form the Ag-Pt-Fe3O4 product. Control experiments reveal that the size of the Ag domain of Ag-Pt-Fe3O4 correlates with the overall surface area of the Pt-Fe3O4 seeds, which is consistent with the coalescence of Ag through a surface-mediated process and can also be exploited to tune the size of the Ag domain. Additionally, we observe that small iron oxide islands on the Pt surface of the Pt-Fe3O4 seeds, deposited during the formation of Pt-Fe3O4, define the morphology of the Ag domain, which in turn influences its optical properties. These results provide unprecedented microscopic insights into the pathway by which Ag-Pt-Fe3O4 heterotrimer nanoparticles form and uncover new design guidelines for the synthesis of high-order hybrid nanoparticles with precisely targeted morphologies and properties.
三组分杂化纳米粒子杂聚物是具有广泛应用的重要多功能构建体,通常通过在二组分杂二聚体种子上生长第三结构域来合成。然而,由于杂二聚体种子暴露了两个截然不同的表面,这两个表面通常都可以支持成核和生长,因此选择性地针对一个特定表面对于专门访问所需的结构至关重要。理解和控制成核和生长因此能够实现高阶杂化纳米粒子的合理形成。在这里,我们报告了一项深入的微观研究,该研究探测了 Ag 对 Pt-Fe3O4 杂二聚体种子的化学选择性添加,以形成 Ag-Pt-Fe3O4 杂三聚物。我们发现,Ag-Pt-Fe3O4 杂三聚物的形成首先是 Ag 在 Pt-Fe3O4 的 Pt 和 Fe3O4 表面上无差别地成核,然后是 Ag 通过表面扩散和在 Pt 表面上的合并来形成 Ag-Pt-Fe3O4 产物。对照实验表明,Ag-Pt-Fe3O4 中 Ag 域的大小与 Pt-Fe3O4 种子的总表面积相关,这与通过表面介导的过程合并 Ag 一致,并且还可以用于调节 Ag 域的大小。此外,我们观察到 Pt-Fe3O4 种子的 Pt 表面上的小氧化铁岛,在 Pt-Fe3O4 的形成过程中沉积,定义了 Ag 域的形态,这反过来又影响了其光学性质。这些结果提供了前所未有的微观见解,了解了 Ag-Pt-Fe3O4 杂三聚物纳米粒子形成的途径,并揭示了具有精确靶向形态和性质的高阶杂化纳米粒子合成的新设计准则。