Suppr超能文献

超薄石墨炔包覆的氢氧化碳酸铁纳米片用于高效水分解

Ultrathin Graphdiyne-Wrapped Iron Carbonate Hydroxide Nanosheets toward Efficient Water Splitting.

作者信息

Hui Lan, Jia Dianzeng, Yu Huidi, Xue Yurui, Li Yuliang

机构信息

Institute of Applied Chemistry , Xinjiang University , Urumqi 830046 , Xinjiang , P. R. China.

Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China.

出版信息

ACS Appl Mater Interfaces. 2019 Jan 23;11(3):2618-2625. doi: 10.1021/acsami.8b01887. Epub 2018 Mar 20.

Abstract

We employed a two-step strategy for preparing ultrathin graphdiyne-wrapped iron carbonate hydroxide nanosheets on nickel foam (FeCH@GDY/NF) as the efficient catalysts toward the electrical splitting water. The introduction of naturally porous GDY nanolayers on FeCH surface endows the pristine catalyst with structural advantages for boosting catalytic performances. Benefited from the protection of robust GDY nanolayers with intimate contact between GDY and FeCH, the combined material exhibits high long-term durability of 10 000 cycles for oxygen-evolution reaction (OER) and 9000 cycles for hydrogen evolution reaction (HER) in 1.0 M KOH. Such excellent bifunctional OER/HER performance makes FeCH@GDY/NF quite qualified for alkaline two-electrode electrolyzer. Remarkably, such electrocatalyst can drive 10 and 100 mA cm at 1.49 and 1.53 V, respectively. These results demonstrate the decisive role of GDY in the improvement of electrocatalytic performances, and open up new opportunities for designing cost-effective, efficient, and stable electrocatalysts for sustainable oxygen/hydrogen generation.

摘要

我们采用两步法在泡沫镍上制备了超薄石墨炔包裹的氢氧化碳酸铁纳米片(FeCH@GDY/NF),作为高效的电催化析水催化剂。在FeCH表面引入天然多孔的GDY纳米层赋予了原始催化剂提升催化性能的结构优势。得益于坚固的GDY纳米层的保护以及GDY与FeCH之间的紧密接触,这种复合材料在1.0 M KOH中对析氧反应(OER)表现出10000次循环的高长期耐久性,对析氢反应(HER)表现出9000次循环的高长期耐久性。如此优异的双功能OER/HER性能使FeCH@GDY/NF完全适用于碱性双电极电解槽。值得注意的是,这种电催化剂在1.49 V和1.53 V时分别能驱动10和100 mA cm²的电流。这些结果证明了GDY在改善电催化性能方面的决定性作用,并为设计用于可持续氧/氢生成的经济高效且稳定的电催化剂开辟了新机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验