Suppr超能文献

使用微软 Kinect 传感器检测心肺活动和相关异常事件。

Detection of Cardiopulmonary Activity and Related Abnormal Events Using Microsoft Kinect Sensor.

机构信息

School of Engineering, University of South Australia, Mawson Lakes, SA 5095, Australia.

Electrical Engineering Technical College, Middle Technical University, Al Doura 10022, Baghdad, Iraq.

出版信息

Sensors (Basel). 2018 Mar 20;18(3):920. doi: 10.3390/s18030920.

Abstract

Monitoring of cardiopulmonary activity is a challenge when attempted under adverse conditions, including different sleeping postures, environmental settings, and an unclear region of interest (ROI). This study proposes an efficient remote imaging system based on a Microsoft Kinect v2 sensor for the observation of cardiopulmonary-signal-and-detection-related abnormal cardiopulmonary events (e.g., tachycardia, bradycardia, tachypnea, bradypnea, and central apnoea) in many possible sleeping postures within varying environmental settings including in total darkness and whether the subject is covered by a blanket or not. The proposed system extracts the signal from the abdominal-thoracic region where cardiopulmonary activity is most pronounced, using a real-time image sequence captured by Kinect v2 sensor. The proposed system shows promising results in any sleep posture, regardless of illumination conditions and unclear ROI even in the presence of a blanket, whilst being reliable, safe, and cost-effective.

摘要

当在不利条件下进行时,心肺活动监测是一项挑战,包括不同的睡眠姿势、环境设置和不明确的感兴趣区域 (ROI)。本研究提出了一种基于 Microsoft Kinect v2 传感器的高效远程成像系统,用于观察多种可能的睡眠姿势下与心肺信号检测相关的异常心肺事件(例如,心动过速、心动过缓、呼吸急促、呼吸过缓以及中枢性呼吸暂停),包括完全黑暗环境以及无论受测者是否盖有毯子。所提出的系统使用 Kinect v2 传感器实时捕获的图像序列,从心肺活动最明显的腹部-胸部区域提取信号。所提出的系统在任何睡眠姿势下都显示出有前景的结果,无论光照条件如何,即使 ROI 不明确甚至受测者被毯子覆盖,系统仍然可靠、安全且具有成本效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a7e/5876730/4b19200fdc3d/sensors-18-00920-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验