Suppr超能文献

基于高度适应的微生物组的生存性状关联分析。

A highly adaptive microbiome-based association test for survival traits.

机构信息

Department of Population Health, New York University School of Medicine, 650 First Avenue, Room 547, New York, NY, 10016, USA.

Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.

出版信息

BMC Genomics. 2018 Mar 20;19(1):210. doi: 10.1186/s12864-018-4599-8.

Abstract

BACKGROUND

There has been increasing interest in discovering microbial taxa that are associated with human health or disease, gathering momentum through the advances in next-generation sequencing technologies. Investigators have also increasingly employed prospective study designs to survey survival (i.e., time-to-event) outcomes, but current item-by-item statistical methods have limitations due to the unknown true association pattern. Here, we propose a new adaptive microbiome-based association test for survival outcomes, namely, optimal microbiome-based survival analysis (OMiSA). OMiSA approximates to the most powerful association test in two domains: 1) microbiome-based survival analysis using linear and non-linear bases of OTUs (MiSALN) which weighs rare, mid-abundant, and abundant OTUs, respectively, and 2) microbiome regression-based kernel association test for survival traits (MiRKAT-S) which incorporates different distance metrics (e.g., unique fraction (UniFrac) distance and Bray-Curtis dissimilarity), respectively.

RESULTS

We illustrate that OMiSA powerfully discovers microbial taxa whether their underlying associated lineages are rare or abundant and phylogenetically related or not. OMiSA is a semi-parametric method based on a variance-component score test and a re-sampling method; hence, it is free from any distributional assumption on the effect of microbial composition and advantageous to robustly control type I error rates. Our extensive simulations demonstrate the highly robust performance of OMiSA. We also present the use of OMiSA with real data applications.

CONCLUSIONS

OMiSA is attractive in practice as the true association pattern is unpredictable in advance and, for survival outcomes, no adaptive microbiome-based association test is currently available.

摘要

背景

随着下一代测序技术的进步,人们对发现与人类健康或疾病相关的微生物类群的兴趣日益浓厚,这一趋势不断增强。研究人员也越来越多地采用前瞻性研究设计来调查生存(即事件时间)结局,但由于未知的真实关联模式,当前逐项的统计方法存在局限性。在这里,我们提出了一种新的基于微生物组的生存结局关联测试方法,即最优基于微生物组的生存分析(OMiSA)。OMiSA 在两个方面近似于最强大的关联测试:1)基于 OTU 的线性和非线性基的基于微生物组的生存分析(MiSALN),分别对稀有、中丰富和丰富的 OTU 进行加权,以及 2)基于微生物组回归的生存特征核关联测试(MiRKAT-S),分别纳入不同的距离度量(例如,独特分数(UniFrac)距离和 Bray-Curtis 不相似性)。

结果

我们表明,无论其潜在相关谱系是稀有还是丰富,以及是否具有系统发育关系,OMiSA 都能强有力地发现微生物类群。OMiSA 是一种基于方差分量得分检验和重抽样方法的半参数方法;因此,它不受微生物组成效应的任何分布假设的限制,有利于稳健地控制 I 型错误率。我们广泛的模拟表明了 OMiSA 的高度稳健性能。我们还介绍了 OMiSA 在真实数据应用中的使用。

结论

在实践中,OMiSA 很有吸引力,因为真实的关联模式是无法预先预测的,而且对于生存结局,目前还没有基于微生物组的适应性关联测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7706/5859547/fd8a27b23a4e/12864_2018_4599_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验