Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium
Centre of Microbial and Plant Genetics, KU Leuven, Heverlee, Belgium.
mBio. 2018 Mar 20;9(2):e02138-17. doi: 10.1128/mBio.02138-17.
Lectin-like bacteriocins (LlpAs) are secreted by proteobacteria and selectively kill strains of their own or related species, and they are composed of two B-lectin domains with divergent sequences. In spp., initial binding of these antibacterial proteins to cells is mediated by the carboxy-terminal domain through d-rhamnose residues present in the common polysaccharide antigen of their lipopolysaccharide, whereas the amino-terminal domain accounts for strain selectivity of killing. Here, we show that spontaneous LlpA-resistant mutants carry mutations in one of three surface-exposed moieties of the essential β-barrel outer membrane protein insertase BamA, the core component of the BAM complex. Polymorphism of this loop in different groups is linked to LlpA susceptibility, and targeted cells all share the same signature motif in this loop. Since heterologous expression of such a gene confers LlpA susceptibility upon a resistant strain, BamA represents the primary bacteriocin selectivity determinant in pseudomonads. Contrary to modular bacteriocins that require uptake via the Tol or Ton system, parasitism of BamA as an LlpA receptor advocates a novel bacteriocin killing mechanism initiated by impairment of the BAM machinery. Bacteria secrete a variety of molecules to eliminate microbial rivals. Bacteriocins are a pivotal group of peptides and proteins that assist in this fight, specifically killing related bacteria. In Gram-negative bacteria, these antibacterial proteins often comprise distinct domains for initial binding to a target cell's surface and subsequent killing via enzymatic or pore-forming activity. Here, we show that lectin-like bacteriocins, a family of bacteriocins that lack the prototypical modular toxin architecture, also stand out by parasitizing BamA, the core component of the outer membrane protein assembly machinery. A particular surface-exposed loop of BamA, critical for its function, serves as a key discriminant for cellular recognition, and polymorphisms in this loop determine whether a strain is susceptible or immune to a particular bacteriocin. These findings suggest a novel mechanism of contact-dependent killing that does not require cellular uptake. The evolutionary advantage of piracy of an essential cellular compound is highlighted by the observation that contact-dependent growth inhibition, a distinct antagonistic system, can equally take advantage of this receptor.
类菌溶素(LlpAs)由变形菌分泌,选择性杀死自身或相关物种的菌株,它们由两个具有不同序列的 B 型凝集素结构域组成。在 属中,这些抗菌蛋白最初与细胞的结合是通过羧基末端结构域介导的,该结构域通过存在于其脂多糖共同多糖抗原中的 d-鼠李糖残基与细胞结合,而氨基末端结构域则决定了杀伤的菌株选择性。在这里,我们表明自发的 LlpA 抗性突变体携带核心 BAM 复合物的组成部分外膜蛋白插入酶 BamA 的三个暴露于表面的部分之一的突变。不同 组中这个环的多态性与 LlpA 的易感性有关,并且靶向细胞在这个环中都具有相同的特征基序。由于这种 基因的异源表达赋予了抗性菌株对 LlpA 的敏感性,因此 BamA 代表假单胞菌中主要的细菌素选择性决定因素。与需要通过 Tol 或 Ton 系统摄取的模块化细菌素相反,作为 LlpA 受体的 BamA 寄生支持了一种由 BAM 机制受损引发的新型细菌素杀伤机制。细菌会分泌多种分子来消灭微生物竞争对手。细菌素是一组重要的肽和蛋白质,有助于这场战斗,特别是杀死相关的细菌。在革兰氏阴性菌中,这些抗菌蛋白通常由初始结合靶细胞表面和随后通过酶或孔形成活性进行杀伤的不同结构域组成。在这里,我们表明,缺乏典型模块化毒素结构的类菌溶素,也是一种家族的细菌素,它还通过寄生外膜蛋白组装机制的核心成分 BamA 而引人注目。BamA 的一个关键的暴露于表面的环,对其功能至关重要,作为细胞识别的关键区分因素,并且这个环中的多态性决定了一个菌株是否对特定的细菌素敏感或免疫。这些发现表明了一种新型的接触依赖性杀伤机制,不需要细胞摄取。观察到一种独特的拮抗系统,即接触依赖性生长抑制,同样可以利用这种受体,这突出了对一种必需细胞化合物进行盗用的进化优势。