Ruhe Zachary C, Nguyen Josephine Y, Xiong Jing, Koskiniemi Sanna, Beck Christina M, Perkins Basil R, Low David A, Hayes Christopher S
Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA.
Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, USA.
mBio. 2017 Mar 28;8(2):e00290-17. doi: 10.1128/mBio.00290-17.
Contact-dependent growth inhibition (CDI) systems encode CdiA effectors, which bind to specific receptors on neighboring bacteria and deliver C-terminal toxin domains to suppress target cell growth. Two classes of CdiA effectors that bind distinct cell surface receptors have been identified, but the molecular basis of receptor specificity is not understood. Alignment of BamA-specific CdiA from EC93 and OmpC-specific CdiA from 536 suggests that the receptor-binding domain resides within a central region that varies between the two effectors. In support of this hypothesis, we find that CdiA fragments containing residues Arg1358 to Phe1646 bind specifically to purified BamA. Moreover, chimeric CdiA that carries the corresponding sequence from CdiA is endowed with OmpC-binding activity, demonstrating that this region dictates receptor specificity. A survey of CdiA proteins reveals two additional effector classes, which presumably recognize distinct receptors. Using a genetic approach, we identify the outer membrane nucleoside transporter Tsx as the receptor for a third class of CdiA effectors. Thus, CDI systems exploit multiple outer membrane proteins to identify and engage target cells. These results underscore the modularity of CdiA proteins and suggest that novel effectors can be constructed through genetic recombination to interchange different receptor-binding domains and toxic payloads. CdiB/CdiA two-partner secretion proteins mediate interbacterial competition through the delivery of polymorphic toxin domains. This process, known as contact-dependent growth inhibition (CDI), requires stable interactions between the CdiA effector protein and specific receptors on the surface of target bacteria. Here, we localize the receptor-binding domain to the central region of CdiA. Receptor-binding domains vary between CdiA proteins, and strains collectively encode at least four distinct effector classes. Further, we show that receptor specificity can be altered by exchanging receptor-binding regions, demonstrating the modularity of this domain. We propose that novel CdiA effectors are naturally generated through genetic recombination to interchange different receptor-binding domains and toxin payloads.
接触依赖性生长抑制(CDI)系统编码CdiA效应蛋白,该蛋白与邻近细菌上的特定受体结合,并传递C端毒素结构域以抑制靶细胞生长。已经鉴定出两类结合不同细胞表面受体的CdiA效应蛋白,但受体特异性的分子基础尚不清楚。来自EC93的BamA特异性CdiA与来自536的OmpC特异性CdiA的比对表明,受体结合结构域位于两个效应蛋白之间不同的中央区域内。为支持这一假设,我们发现包含1358位精氨酸至1646位苯丙氨酸残基的CdiA片段能特异性结合纯化的BamA。此外,携带来自CdiA相应序列的嵌合CdiA具有OmpC结合活性,表明该区域决定受体特异性。对CdiA蛋白的调查揭示了另外两类效应蛋白,它们可能识别不同的受体。通过遗传学方法,我们确定外膜核苷转运蛋白Tsx是第三类CdiA效应蛋白的受体。因此,CDI系统利用多种外膜蛋白来识别并作用于靶细胞。这些结果强调了CdiA蛋白的模块化,并表明可以通过基因重组构建新型效应蛋白,以互换不同的受体结合结构域和毒性载荷。CdiB/CdiA双组分分泌蛋白通过传递多态性毒素结构域介导细菌间竞争。这个过程,即接触依赖性生长抑制(CDI),需要CdiA效应蛋白与靶细菌表面的特定受体之间的稳定相互作用。在这里,我们将受体结合结构域定位到CdiA的中央区域。CdiA蛋白之间的受体结合结构域有所不同,并且菌株共同编码至少四类不同的效应蛋白。此外,我们表明通过交换受体结合区域可以改变受体特异性,证明了该结构域的模块化。我们提出,新型CdiA效应蛋白是通过基因重组自然产生的,以互换不同的受体结合结构域和毒素载荷。