Physical Chemistry I - Biophysical Chemistry, Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany.
Phys Chem Chem Phys. 2018 May 16;20(19):13159-13170. doi: 10.1039/C8CP00907D.
Organisms are thriving in the deep sea at pressures of up to the 1 kbar level. To withstand such harsh conditions, they accumulate particular osmolyte mixtures to counteract the pressure stress imposed. We explored the combined effects of pressure and osmolyte mixtures known from deep sea organisms on the closed-to-open conformational transition of a DNA hairpin (Hp). To this end, single-molecule Förster resonance energy transfer (smFRET) experiments were carried out in an optimized high-pressure capillary optical cell. In the absence of osmolytes, pressure shifts the conformational equilibrium of the DNA Hp towards the open, unfolded state owing to a volume decrease of about -20 cm3 mol-1. We show that the deep-sea osmolyte mixture, largely composed of TMAO, is able to rescue the DNA Hp from unfolding even up to almost 1 kbar, which is supposed to be essentially due to a distinct excluded volume effect.
生物体在高达 1 kbar 水平的压力下在深海中茁壮成长。为了承受如此恶劣的条件,它们积累了特殊的渗透物混合物来对抗施加的压力应激。我们研究了来自深海生物的压力和渗透物混合物的组合效应对 DNA 发夹(Hp)的闭合到开放构象转变的影响。为此,在优化的高压毛细管光学池内进行了单分子Förster 共振能量转移(smFRET)实验。在没有渗透物的情况下,由于体积减少约 -20 cm3 mol-1,压力将 DNA Hp 的构象平衡推向开放、展开状态。我们表明,深海渗透物混合物,主要由 TMAO 组成,即使在接近 1 kbar 的压力下也能够使 DNA Hp 免于展开,这主要归因于明显的排除体积效应。