Richard Benjamin, Swanson Richard, Izaguirre Gonzalo, Olson Steven T
Center for Molecular Biology of Oral Diseases and Department of Periodontics , University of Illinois at Chicago , Chicago , Illinois 60612 , United States.
Biochemistry. 2018 Apr 17;57(15):2211-2226. doi: 10.1021/acs.biochem.8b00216. Epub 2018 Mar 30.
Heparin allosterically activates the anticoagulant serpin, antithrombin, by binding through a sequence-specific pentasaccharide and inducing activating conformational changes in the protein. Three basic residues of antithrombin, Lys114, Lys125, and Arg129, have been shown to be hotspots for binding the pentasaccharide, but the molecular basis for such hotspot binding has been unclear. To determine whether this results from cooperative interactions, we analyzed the effects of single, double, and triple mutations of the hotspot residues on pentasaccharide binding and activation of antithrombin. Double-mutant cycles revealed that the contribution of each residue to pentasaccharide binding energy was progressively reduced when one or both of the other residues were mutated, indicating strong coupling between each pair of residues that was dependent on the third residue and reflective of the three residues acting as a cooperative unit. Rapid kinetic studies showed that the hotspot residue mutations progressively abrogated the ability of the pentasaccharide to bind productively to native antithrombin and to conformationally activate the serpin by engaging the hotspot residues in an induced-fit interaction. Examination of the antithrombin-pentasaccharide complex structure revealed that the hotspot residues form two adjoining binding pockets for critical sulfates of the pentasaccharide that structurally link these residues. Together, these findings demonstrate that cooperative interactions of Lys114, Lys125, and Arg129 are critical for the productive induced-fit binding of the heparin pentasaccharide to antithrombin that allosterically activates the anticoagulant function of the serpin.
肝素通过与序列特异性五糖结合并诱导蛋白质发生激活构象变化,从而变构激活抗凝血丝氨酸蛋白酶抑制剂抗凝血酶。抗凝血酶的三个碱性残基,即赖氨酸114、赖氨酸125和精氨酸129,已被证明是结合五糖的热点,但这种热点结合的分子基础尚不清楚。为了确定这是否是由协同相互作用导致的,我们分析了热点残基的单突变、双突变和三突变对五糖结合及抗凝血酶激活的影响。双突变循环表明,当其他一个或两个残基发生突变时,每个残基对五糖结合能的贡献会逐渐降低,这表明每对残基之间存在强烈的耦合作用,这种耦合作用依赖于第三个残基,反映出这三个残基作为一个协同单元发挥作用。快速动力学研究表明,热点残基突变逐渐消除了五糖与天然抗凝血酶有效结合的能力,以及通过诱导契合相互作用使热点残基参与从而变构激活丝氨酸蛋白酶抑制剂的能力。对抗凝血酶 - 五糖复合物结构的研究表明,热点残基形成了两个相邻的结合口袋,用于结合五糖的关键硫酸盐,这些硫酸盐在结构上连接了这些残基。总之,这些发现表明,赖氨酸114、赖氨酸125和精氨酸129的协同相互作用对于肝素五糖与抗凝血酶的有效诱导契合结合至关重要,这种结合变构激活了丝氨酸蛋白酶抑制剂的抗凝血功能。