Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA.
Department of Mathematics and Statistics, American University, Washington, DC 20016, USA.
Syst Biol. 2018 Sep 1;67(5):821-829. doi: 10.1093/sysbio/syy023.
The analysis of hybridization and gene flow among closely related taxa is a common goal for researchers studying speciation and phylogeography. Many methods for hybridization detection use simple site pattern frequencies from observed genomic data and compare them to null models that predict an absence of gene flow. The theory underlying the detection of hybridization using these site pattern probabilities exploits the relationship between the coalescent process for gene trees within population trees and the process of mutation along the branches of the gene trees. For certain models, site patterns are predicted to occur in equal frequency (i.e., their difference is 0), producing a set of functions called phylogenetic invariants. In this article, we introduce HyDe, a software package for detecting hybridization using phylogenetic invariants arising under the coalescent model with hybridization. HyDe is written in Python and can be used interactively or through the command line using pre-packaged scripts. We demonstrate the use of HyDe on simulated data, as well as on two empirical data sets from the literature. We focus in particular on identifying individual hybrids within population samples and on distinguishing between hybrid speciation and gene flow. HyDe is freely available as an open source Python package under the GNU GPL v3 on both GitHub (https://github.com/pblischak/HyDe) and the Python Package Index (PyPI: https://pypi.python.org/pypi/phyde).
分析密切相关分类群之间的杂交和基因流是研究物种形成和系统地理学的研究人员的共同目标。许多用于杂交检测的方法使用来自观察到的基因组数据的简单位点模式频率,并将其与预测没有基因流的零模型进行比较。使用这些位点模式概率检测杂交的理论利用了群体树内基因树的合并过程与基因树分支上的突变过程之间的关系。对于某些模型,预测位点模式以相等的频率出现(即,它们的差异为 0),产生一组称为系统发育不变量的函数。在本文中,我们介绍了 HyDe,这是一个使用合并模型下的系统发育不变量检测杂交的软件包。HyDe 是用 Python 编写的,可以通过预包装的脚本交互使用或通过命令行使用。我们在模拟数据以及来自文献的两个经验数据集上演示了 HyDe 的使用。我们特别关注在群体样本中识别个体杂种,并区分杂种形成和基因流。HyDe 是一个免费的开源 Python 包,根据 GNU GPL v3 在 GitHub(https://github.com/pblischak/HyDe)和 Python 包索引(PyPI:https://pypi.python.org/pypi/phyde)上可用。