Suppr超能文献

益生菌大肠杆菌通过 DegP 的细胞外活性抑制致病性大肠杆菌生物膜的形成。

Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP.

机构信息

Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.

出版信息

Sci Rep. 2018 Mar 21;8(1):4939. doi: 10.1038/s41598-018-23180-1.

Abstract

Many chronic infections involve bacterial biofilms, which are difficult to eliminate using conventional antibiotic treatments. Biofilm formation is a result of dynamic intra- or inter-species interactions. However, the nature of molecular interactions between bacteria in multi-species biofilms are not well understood compared to those in single-species biofilms. This study investigated the ability of probiotic Escherichia coli Nissle 1917 (EcN) to outcompete the biofilm formation of pathogens including enterohemorrhagic E. coli (EHEC), Pseudomonas aeruginosa, Staphylococcus aureus, and S. epidermidis. When dual-species biofilms were formed, EcN inhibited the EHEC biofilm population by 14-fold compared to EHEC single-species biofilms. This figure was 1,100-fold for S. aureus and 8,300-fold for S. epidermidis; however, EcN did not inhibit P. aeruginosa biofilms. In contrast, commensal E. coli did not exhibit any inhibitory effect toward other bacterial biofilms. We identified that EcN secretes DegP, a bifunctional (protease and chaperone) periplasmic protein, outside the cells and controls other biofilms. Although three E. coli strains tested in this study expressed degP, only the EcN strain secreted DegP outside the cells. The deletion of degP disabled the activity of EcN in inhibiting EHEC biofilms, and purified DegP directly repressed EHEC biofilm formation. Hence, probiotic E. coli outcompetes pathogenic biofilms via extracellular DegP activity during dual-species biofilm formation.

摘要

许多慢性感染涉及细菌生物膜,使用传统抗生素治疗很难消除。生物膜的形成是动态的种内或种间相互作用的结果。然而,与单物种生物膜相比,多物种生物膜中细菌之间的分子相互作用的性质还不太清楚。本研究调查了益生菌大肠杆菌 Nissle 1917(EcN)竞争包括肠出血性大肠杆菌(EHEC)、铜绿假单胞菌、金黄色葡萄球菌和表皮葡萄球菌在内的病原体生物膜形成的能力。当形成双物种生物膜时,与 EHEC 单物种生物膜相比,EcN 抑制 EHEC 生物膜种群的能力提高了 14 倍。对于金黄色葡萄球菌和表皮葡萄球菌,这一数字分别提高了 1100 倍和 8300 倍;然而,EcN 不会抑制铜绿假单胞菌生物膜。相比之下,共生大肠杆菌对其他细菌生物膜没有任何抑制作用。我们发现 EcN 分泌 DegP,一种双功能(蛋白酶和伴侣蛋白)周质蛋白,在细胞外并控制其他生物膜。虽然本研究中测试的三种大肠杆菌菌株都表达了 degP,但只有 EcN 菌株将 DegP 分泌到细胞外。degP 的缺失使 EcN 抑制 EHEC 生物膜的活性丧失,纯化的 DegP 直接抑制 EHEC 生物膜的形成。因此,益生菌大肠杆菌通过双物种生物膜形成过程中细胞外 DegP 活性来竞争致病生物膜。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b596/5862908/1280262b20ad/41598_2018_23180_Fig1_HTML.jpg

相似文献

2
A survey of multiple candidate probiotic bacteria reveals specificity in the ability to modify the effects of key wound pathogens.
Microbiol Spectr. 2024 Jun 4;12(6):e0034724. doi: 10.1128/spectrum.00347-24. Epub 2024 May 3.
3
Antagonistic effects of probiotic Escherichia coli Nissle 1917 on EHEC strains of serotype O104:H4 and O157:H7.
Int J Med Microbiol. 2013 Jan;303(1):1-8. doi: 10.1016/j.ijmm.2012.11.006. Epub 2013 Jan 10.
4
Degp degrades a wide range of substrate proteins in Escherichia coli under stress conditions.
Biochem J. 2019 Dec 12;476(23):3549-3564. doi: 10.1042/BCJ20190446.
6
DegP functions as a critical protease for bacterial acid resistance.
FEBS J. 2018 Sep;285(18):3525-3538. doi: 10.1111/febs.14627. Epub 2018 Aug 24.
7
HtrA-mediated E-cadherin cleavage is limited to DegP and DegQ homologs expressed by gram-negative pathogens.
Cell Commun Signal. 2016 Dec 8;14(1):30. doi: 10.1186/s12964-016-0153-y.
8
Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin.
Appl Environ Microbiol. 2007 Jul;73(13):4100-9. doi: 10.1128/AEM.00360-07. Epub 2007 May 4.
10
The inner cavity of Escherichia coli DegP protein is not essential for molecular chaperone and proteolytic activity.
J Bacteriol. 2007 Feb;189(3):706-16. doi: 10.1128/JB.01334-06. Epub 2006 Nov 22.

引用本文的文献

1
Synthetic Biology-Based Engineering Living Therapeutics for Antimicrobial Application.
Exploration (Beijing). 2025 Apr 3;5(4):e20240045. doi: 10.1002/EXP.20240045. eCollection 2025 Aug.
2
Harnessing the Power of Probiotics: Boosting Immunity and Safeguarding against Various Diseases and Infections.
Recent Adv Antiinfect Drug Discov. 2025;20(1):5-29. doi: 10.2174/0127724344308638240530065552.
3
Investigation of the effect of anti-PIA/PNAG antibodies on biofilm formation in .
Front Microbiol. 2025 Mar 6;16:1552670. doi: 10.3389/fmicb.2025.1552670. eCollection 2025.
4
Secreted autotransporter toxin produced by probiotic Nissle 1917 enhances neurodegeneration in .
MicroPubl Biol. 2025 Jan 30;2025. doi: 10.17912/micropub.biology.001366. eCollection 2025.
5
Combating antibiotic resistance in a one health context: a plethora of frontiers.
One Health Outlook. 2024 Nov 2;6(1):19. doi: 10.1186/s42522-024-00115-7.
6
A new standardization for the use of chicken embryo: selection of target from the phage display library and infection.
Appl Microbiol Biotechnol. 2024 Jul 10;108(1):412. doi: 10.1007/s00253-024-13227-x.
7
Klebsiella oxytoca inhibits Salmonella infection through multiple microbiota-context-dependent mechanisms.
Nat Microbiol. 2024 Jul;9(7):1792-1811. doi: 10.1038/s41564-024-01710-0. Epub 2024 Jun 11.
8
Nutrition of within the intestinal microbiome.
EcoSal Plus. 2024 Dec 12;12(1):eesp00062023. doi: 10.1128/ecosalplus.esp-0006-2023. Epub 2024 Jan 11.
9
Advanced probiotics: bioengineering and their therapeutic application.
Mol Biol Rep. 2024 Feb 25;51(1):361. doi: 10.1007/s11033-024-09309-8.
10
Multispecies Bacterial Biofilms and Their Evaluation Using Bioreactors.
Foods. 2023 Dec 15;12(24):4495. doi: 10.3390/foods12244495.

本文引用的文献

2
Biofilm microenvironment induces a widespread adaptive amino-acid fermentation pathway conferring strong fitness advantage in Escherichia coli.
PLoS Genet. 2017 May 19;13(5):e1006800. doi: 10.1371/journal.pgen.1006800. eCollection 2017 May.
3
Microcins mediate competition among Enterobacteriaceae in the inflamed gut.
Nature. 2016 Dec 8;540(7632):280-283. doi: 10.1038/nature20557. Epub 2016 Oct 31.
4
Enterococcal Metabolite Cues Facilitate Interspecies Niche Modulation and Polymicrobial Infection.
Cell Host Microbe. 2016 Oct 12;20(4):493-503. doi: 10.1016/j.chom.2016.09.004.
5
Anti-biofilm Activity as a Health Issue.
Front Microbiol. 2016 Apr 26;7:592. doi: 10.3389/fmicb.2016.00592. eCollection 2016.
6
Multifactorial Competition and Resistance in a Two-Species Bacterial System.
PLoS Genet. 2015 Dec 8;11(12):e1005715. doi: 10.1371/journal.pgen.1005715. eCollection 2015 Dec.
7
Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens.
Front Microbiol. 2015 Aug 20;6:841. doi: 10.3389/fmicb.2015.00841. eCollection 2015.
10
Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium.
PLoS One. 2014 Sep 8;9(9):e107186. doi: 10.1371/journal.pone.0107186. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验