Létoffé Sylvie, Chalabaev Sabina, Dugay José, Stressmann Franziska, Audrain Bianca, Portais Jean-Charles, Letisse Fabien, Ghigo Jean-Marc
Institut Pasteur, Genetics of Biofilms Laboratory. 25-28 rue du Docteur Roux, France.
Analytical, Bioanalytical Sciences and Miniaturization Laboratory, CNRS UMR CBI 8231, ESPCI Paris, 10 rue Vauquelin, Paris, France.
PLoS Genet. 2017 May 19;13(5):e1006800. doi: 10.1371/journal.pgen.1006800. eCollection 2017 May.
Bacterial metabolism has been studied primarily in liquid cultures, and exploration of other natural growth conditions may reveal new aspects of bacterial biology. Here, we investigate metabolic changes occurring when Escherichia coli grows as surface-attached biofilms, a common but still poorly characterized bacterial lifestyle. We show that E. coli adapts to hypoxic conditions prevailing within biofilms by reducing the amino acid threonine into 1-propanol, an important industrial commodity not known to be naturally produced by Enterobacteriaceae. We demonstrate that threonine degradation corresponds to a fermentation process maintaining cellular redox balance, which confers a strong fitness advantage during anaerobic and biofilm growth but not in aerobic conditions. Whereas our study identifies a fermentation pathway known in Clostridia but previously undocumented in Enterobacteriaceae, it also provides novel insight into how growth in anaerobic biofilm microenvironments can trigger adaptive metabolic pathways edging out competition with in mixed bacterial communities.
细菌代谢主要是在液体培养物中进行研究的,而对其他自然生长条件的探索可能会揭示细菌生物学的新方面。在此,我们研究了大肠杆菌形成表面附着生物膜时发生的代谢变化,生物膜是一种常见但仍未得到充分表征的细菌生存方式。我们发现,大肠杆菌通过将氨基酸苏氨酸还原为1-丙醇来适应生物膜内普遍存在的缺氧条件,1-丙醇是一种重要的工业商品,此前未知肠杆菌科细菌能天然产生。我们证明,苏氨酸降解对应于一个维持细胞氧化还原平衡的发酵过程,这在厌氧和生物膜生长过程中赋予了强大的适应性优势,但在有氧条件下则不然。虽然我们的研究确定了梭菌中已知但此前在肠杆菌科中未被记录的一条发酵途径,但它也为厌氧生物膜微环境中的生长如何触发适应性代谢途径以在混合细菌群落中脱颖而出提供了新的见解。