Associate Professor, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.
PhD Candidate, Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America.
PLoS One. 2018 Mar 22;13(3):e0188299. doi: 10.1371/journal.pone.0188299. eCollection 2018.
Verifying that a statistically significant result is scientifically meaningful is not only good scientific practice, it is a natural way to control the Type I error rate. Here we introduce a novel extension of the p-value-a second-generation p-value (pδ)-that formally accounts for scientific relevance and leverages this natural Type I Error control. The approach relies on a pre-specified interval null hypothesis that represents the collection of effect sizes that are scientifically uninteresting or are practically null. The second-generation p-value is the proportion of data-supported hypotheses that are also null hypotheses. As such, second-generation p-values indicate when the data are compatible with null hypotheses (pδ = 1), or with alternative hypotheses (pδ = 0), or when the data are inconclusive (0 < pδ < 1). Moreover, second-generation p-values provide a proper scientific adjustment for multiple comparisons and reduce false discovery rates. This is an advance for environments rich in data, where traditional p-value adjustments are needlessly punitive. Second-generation p-values promote transparency, rigor and reproducibility of scientific results by a priori specifying which candidate hypotheses are practically meaningful and by providing a more reliable statistical summary of when the data are compatible with alternative or null hypotheses.
验证一个具有统计学意义的结果是否具有科学意义,不仅是良好的科学实践,也是控制Ⅰ类错误率的自然方法。在这里,我们引入了一种 p 值的新扩展,即第二代 p 值(pδ),它正式考虑了科学相关性,并利用了这种自然的Ⅰ类错误控制。该方法依赖于一个预先指定的区间零假设,该假设代表了一组在科学上无趣或实际上为零的效应大小。第二代 p 值是数据支持的假设也是零假设的比例。因此,第二代 p 值表示数据与零假设(pδ=1)相容,或者与替代假设(pδ=0)相容,或者数据不确定(0<pδ<1)。此外,第二代 p 值为多重比较提供了适当的科学调整,并降低了假阳性率。对于数据丰富的环境来说,这是一个进步,因为传统的 p 值调整对于这种环境来说是不必要的惩罚。第二代 p 值通过预先指定哪些候选假设在实践中是有意义的,并提供更可靠的统计总结,说明数据何时与替代或零假设相容,从而提高了科学结果的透明度、严谨性和可重复性。