Wang Yang, Liu Xueqin, Liu Jia, Han Bo, Hu Xiaoqin, Yang Fan, Xu Zuwei, Li Yinchang, Jia Songru, Li Zhen, Zhao Yanli
Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China.
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.
Angew Chem Int Ed Engl. 2018 May 14;57(20):5765-5771. doi: 10.1002/anie.201802014. Epub 2018 Apr 18.
Graphite carbon nitride (g-C N ) is a promising candidate for photocatalytic hydrogen production, but only shows moderate activity owing to sluggish photocarrier transfer and insufficient light absorption. Herein, carbon quantum dots (CQDs) implanted in the surface plane of g-C N nanotubes were synthesized by thermal polymerization of freeze-dried urea and CQDs precursor. The CQD-implanted g-C N nanotubes (CCTs) could simultaneously facilitate photoelectron transport and suppress charge recombination through their specially coupled heterogeneous interface. The electronic structure and morphology were optimized in the CCTs, contributing to greater visible light absorption and a weakened barrier of the photocarrier transfer. As a result, the CCTs exhibited efficient photocatalytic performance under light irradiation with a high H production rate of 3538.3 μmol g h and a notable quantum yield of 10.94 % at 420 nm.
石墨相氮化碳(g-C₃N₄)是光催化产氢的一个有潜力的候选材料,但由于光载流子转移缓慢和光吸收不足,其活性仅处于中等水平。在此,通过冷冻干燥尿素和碳量子点(CQDs)前驱体的热聚合反应,合成了植入到g-C₃N₄纳米管表面平面的碳量子点。植入了CQDs的g-C₃N₄纳米管(CCTs)能够通过其特殊耦合的异质界面同时促进光电子传输并抑制电荷复合。CCTs的电子结构和形貌得到了优化,有助于增强可见光吸收并削弱光载流子转移的势垒。结果,CCTs在光照射下表现出高效的光催化性能,在420nm处具有3538.3 μmol g⁻¹ h⁻¹的高产氢率和10.94 %的显著量子产率。