Department of Chemistry , The University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z3 , Canada.
Department of Chemical & Biological Engineering , The University of British Columbia , 2360 East Mall , Vancouver , British Columbia V6H 1Z3 , Canada.
Acc Chem Res. 2018 Apr 17;51(4):910-918. doi: 10.1021/acs.accounts.8b00010. Epub 2018 Mar 23.
Electrocatalytic CO conversion at near ambient temperatures and pressures offers a potential means of converting waste greenhouse gases into fuels or commodity chemicals (e.g., CO, formic acid, methanol, ethylene, alkanes, and alcohols). This process is particularly compelling when driven by excess renewable electricity because the consequent production of solar fuels would lead to a closing of the carbon cycle. However, such a technology is not currently commercially available. While CO electrolysis in H-cells is widely used for screening electrocatalysts, these experiments generally do not effectively report on how CO electrocatalysts behave in flow reactors that are more relevant to a scalable CO electrolyzer system. Flow reactors also offer more control over reagent delivery, which includes enabling the use of a gaseous CO feed to the cathode of the cell. This setup provides a platform for generating much higher current densities ( J) by reducing the mass transport issues inherent to the H-cells. In this Account, we examine some of the systems-level strategies that have been applied in an effort to tailor flow reactor components to improve electrocatalytic reduction. Flow reactors that have been utilized in CO electrolysis schemes can be categorized into two primary architectures: Membrane-based flow cells and microfluidic reactors. Each invoke different dynamic mechanisms for the delivery of gaseous CO to electrocatalytic sites, and both have been demonstrated to achieve high current densities ( J > 200 mA cm) for CO reduction. One strategy common to both reactor architectures for improving J is the delivery of CO to the cathode in the gas phase rather than dissolved in a liquid electrolyte. This physical facet also presents a number of challenges that go beyond the nature of the electrocatalyst, and we scrutinize how the judicious selection and modification of certain components in microfluidic and/or membrane-based reactors can have a profound effect on electrocatalytic performance. In membrane-based flow cells, for example, the choice of either a cation exchange membrane (CEM), anion exchange membrane (AEM), or a bipolar membrane (BPM) affects the kinetics of ion transport pathways and the range of applicable electrolyte conditions. In microfluidic cells, extensive studies have been performed upon the properties of porous carbon gas diffusion layers, materials that are equally relevant to membrane reactors. A theme that is pervasive throughout our analyses is the challenges associated with precise and controlled water management in gas phase CO electrolyzers, and we highlight studies that demonstrate the importance of maintaining adequate flow cell hydration to achieve sustained electrolysis.
在接近环境温度和压力下进行电催化 CO 转化为燃料或商品化学品(例如 CO、甲酸、甲醇、乙烯、烷烃和醇)提供了一种潜在的方法。当由过剩的可再生电力驱动时,该过程尤其引人注目,因为由此产生的太阳能燃料的生产将导致碳循环的封闭。然而,这种技术目前还没有商业化。虽然 H 细胞中的 CO 电解广泛用于筛选电催化剂,但这些实验通常不能有效地报告 CO 电催化剂在更相关的可扩展 CO 电解槽系统中的流动反应器中的行为。流动反应器还提供了对试剂输送的更多控制,包括能够将气态 CO 进料到电池的阴极。这种设置为产生更高的电流密度 ( J) 提供了一个平台,通过减少 H 细胞固有的质量传输问题。在本报告中,我们研究了一些已经应用的系统级策略,这些策略旨在努力调整流动反应器组件以改善电催化还原。在 CO 电解方案中使用的流动反应器可以分为两种主要架构:基于膜的流动电池和微流反应器。这两种架构都为气态 CO 向电催化位点的输送调用了不同的动态机制,并且都已经证明可以实现 CO 还原的高电流密度 ( J > 200 mA cm)。这两种反应器架构中提高 J 的一个共同策略是将 CO 以气相而不是溶解在液体电解质中输送到阴极。这种物理方面也带来了许多超出电催化剂性质的挑战,我们仔细研究了在微流和/或膜基反应器中明智地选择和修改某些组件如何对电催化性能产生深远影响。例如,在基于膜的流动电池中,阳离子交换膜 (CEM)、阴离子交换膜 (AEM) 或双极膜 (BPM) 的选择会影响离子传输途径的动力学和适用电解质条件的范围。在微流电池中,已经对多孔碳气体扩散层的性质进行了广泛的研究,这些性质同样与膜反应器相关。一个贯穿我们分析的主题是与气相 CO 电解槽中精确和受控的水管理相关的挑战,我们强调了一些研究,这些研究表明保持适当的流动电池水合作用以实现持续电解的重要性。